Infocommunications and Radio Technologies, 2020, vol. 3, no. 1, pp. 5–23. *Инфокоммуникационные и радиоэлектронные технологии*. 2020. Т. 3, № 1. С. 5—23. ISSN: 2587-9936

УДК 521

Двойные сверхмассивные черные дыры как возможные источники мощного излучения гравитационных волн

¹ Вольвач А. Е., ² Ларионов М. Г., ¹ Вольвач Л. Н., ³ Аллер Х. Д., ³ Аллер М. Ф.

¹ Отдел радиоастрономии и геодинамики, Крымская астрофизическая обсерватория, Ялта, 298688, Российская Федерация ² Физический институт им. П. Н. Лебедева РАН, Астрокосмический центр, Москва, Российская Федерация ³ Радио обсерватория Мичиганского университета Анн Арбор, MI 48109, США volvach@bk.ru

> Получено: 22 февраля 2020 г. Отрецензировано: 2 марта 2020 г. Принято к публикации: 5 марта 2020 г.

Аннотация: В плане выполнения программы по нахождению и отбору кандидатов в двойные сверхмассивные черные дыры (ДСМЧД) собраны данные длительных многочастотных мониторингов активных ядер галактик (АЯГ) из базы данных Крымской астрофизической обсерватории и других мировых баз данных. Созданы методики определения гармонических составляющих в рядах данных многочастотных мониторингов, получения кросскорреляционных функций, определения параметров ДСМЧД. На примере АЯГ 0235+1634 показана эффективность предложенных методик, которые будут использованы для определения мощности гравитационных волн (ГВ), идущих от отобранных ДСМЧД.

Ключевые слова: гравитационные волны, АЯГ, черные дыры, радиоизлучение.

Для цитирования (ГОСТ 7.0.5—2008): Вольвач А. Е., Ларионов М. Г., Вольвач Л. Н., Аллер Х. Д., Аллер М. Ф. Двойные сверхмассивные черные дыры как возможные источники мощного излучения гравитационных волн // Инфокоммуникационные и радиоэлектронные технологии. 2020. Т. 3, № 1. С. 5—23.

Для цитирования (ГОСТ 7.0.11—2011): Вольвач, А. Е. Двойные сверхмассивные черные дыры как возможные источники мощного излучения гравитационных волн / А. Е. Вольвач, М. Г. Ларионов, Л. Н. Вольвач, Х. Д. Аллер, М. Ф. Аллер // Инфокоммуникационные и радиоэлектронные технологии. — 2020. — Т. 3, № 1. — С. 5—23.

Double supermassive black holes as possible sources of powerful gravitational wave radiation

A. E.Volvach¹, M. G. Larionov², L. N. Volvach¹, H. D. Aller³, and M. F. Aller³

¹ Radio Astronomy and Geodynamics Department, Crimean Astrophysical Observatory, Yalta, 298688, Russian Federation
² Astro Space Center, Lebedev Physical Institute, Russian Academy of Sciences, Moscow, 117997 Russian Federation
³ Department of Astronomy, University of Michigan, Ann Arbor, USA volvach@bk.ru

> Received: February 22, 2020 Peer-reviewed: March 2, 2020 Accepted: March 5, 2020

Abstract: In terms of program execution on finding and selecting candidates for dual supermassive black holes (DSMBHs) collected data long-term multi-frequency monitoring of active galactic nuclei (AGNs) from the databases of the Crimean Astrophysical Observatory and other world databases. Methods for determining the harmonic components in the data series of multi-frequency monitoring, obtaining cross-correlation functions, and determining the parameters of DSMBHs have been developed. The efficiency of the proposed methods, which will be used to determine the power of the GW coming from the selected DSMCHD, is shown on the example of the AGN AO 0235+164.

Keywords: gravitational waves, AGN, black holes, radio emission.

For citation (IEEE): A. E. Volvach, M. G. Larionov, L. N. Volvach, H. D. Aller, and M. F. Aller, "Double supermassive black holes as possible sources of powerful gravitational wave radiation," *Infocommunications and Radio Technologies*, 2020, vol. 3, no. 1, pp. 5–23.

1. Введение

Из существующих двойных сверхмассивных черных дыр (ДСМЧД) мощным источником излучения гравитационных волн (ГВ), достоверно установленным, считается блазар ОЈ 287 [1, 2]. Этот АЯГ в оптическом диапазоне длин волн наблюдается более ста лет и имеет самую продолжительную базу данных. Все остальные АЯГ, в лучшем случае, насчитывают пятидесятилетнюю историю. При этом полученных данных в оптическом диапазоне значительно меньше, чем в радиодиапазоне. К тому же, ОЈ 287

VOLVACH A. E. et al. Double supermassive black holes as possible sources... ВОЛЬВАЧ А. Е. и др. Двойные сверхмассивные черные дыры как возможные источники...

— сравнительно близкий и яркий объект в оптическом диапазоне длин волн.

Иногда сложность заключается в том, что в центральных областях АЯГ порой наблюдается значительное поглощение в оптическом диапазоне, из-за чего и так слабые из-за удаленности источники становятся еще тусклее.

Установление двойственности среди сверхмассивных черных дыр (СМЧД) требует использования определенных подходов и методов исследования. В первую очередь, необходимо иметь набор данных наблюдений каждого кандидата в ДСМЧД, по возможности в широком диапазоне длин волн — от радио- до гамма диапазона. В большинстве случаев — это просто невыполнимая задача из-за отсутствия такого набора данных.

Затем надо выбрать диапазон, в котором для каждого рассматриваемого источника достаточно информации для проведения математических анализов по выявлению гармонических составляющих в наблюдательных данных. Эти ряды должны быть достаточно продолжительными (многие десятки лет) для гармонических составляющих орбитального, прецессионного и, возможно, других периодов.

После этого, необходимо выбрать оптимальный метод проведения гармонического анализа для определения гармонических составляющих в наблюдательных рядах данных. В предложенном методе должны учитываться особенности сбора экспериментальных данных, их качество, скважность и т. д.

Так как многочастотные мониторинговые данные несут в себе дополнительную и существенную информацию, в процессе их использования понадобится проводить кросс-корреляционные анализы между различными частотными диапазонами. Поскольку не во всех собранных данных присутствует везде равноточная по времени информация, то требуется предварительно выполнить процедуру по приведению массивов данных к равноточному виду с использованием различных процедур сглаживания.

Необходимые для проведения анализов параметры ДСМЧД непременно включают в себя нахождение масс их компонентов. Как первый шаг для их определения сначала нужно иметь возможность определить суммарную массу центрального тела с использованием динамического метода нахождения скоростей объектов, движущихся по кепплеровским орбитам вокруг центральной области ДСМЧД. К сожалению, этот метод неприемлем для большинства АЯГ, которые находятся на удаленных космологических расстояниях по причине невозможности получить по ним данные в оптическом диапазоне длин волн. Поэтому необходимо найти другие методы определения масс компаньонов ДСМЧД. Отсюда возникает задача разработки такого метода в другом диапазоне длин волн, кроме оптического.

Таким образом, перед тем, как проводить обработку длинных рядов экспериментальных данных, необходимо иметь набор методов, с помощью которых можно было бы решить поставленную задачу по нахождению фактов двойственности ДСМЧД, способных эффективно излучать ГВ.

2. Наблюдения и обработка данных

Наблюдения в миллиметровом диапазоне длин волн на частотах 22.2 и 36.8 ГГц производились с помощью 22-метрового радиотелескопа РТ-22 Крымской астрофизической обсерватории. Использовались радиометрические приемники с диаграммной модуляцией [3]. Благодаря такой методике приема сигнала удавалось избежать искажения результатов аномальным спектром флуктуаций коэффициентов усиления усилителей. Кроме того, снижался уровень флуктуаций из-за неоднородностей атмосферы, которые существенны на сантиметровых и особенно на миллиметровых волнах.

Антенная температура от источников определялась как разность сигналов с выхода радиометра в двух положениях антенны, когда радиотелескоп устанавливался на источник поочередно, то одним (on), то другим (on) приемными рупорами (методика "on-on"). Наблюдения каждого источника состояли из 5—20 накоплений сигнала, в зависимости от достижения необходимого отношения сигнал/шум. Затем рассчитывалось среднее значение и вычислялась среднеквадратичная ошибка среднего. Вместе с наблюдениями исследуемых объектов проводились наблюдения калибровочных источников, параметры которых указаны в Таблице 1.

Антенные температуры от источников пересчитывались в спектральные плотности потоков с использованием зависимости:

$$P=2kT_a/S_{9\phi\phi},\tag{1}$$

где Р — спектральная плотность потока радиоисточника, k — постоянная Больцмана, T_a — антенная температура от источника, $S_{3\phi\phi}$ — эффективная площадь поверхности основного зеркала радиотелескопа.

Таблица 1. Параметры калибровочных источников Table 1. Parameters of calibration sources

Партота ГГи	Принятые значения потоков для источников, Р (Ян)				
Чистоти, 11 ц	DR 21	3C 274	NGC 7027	3C 286	
36.8	18.3	14.3	5.1	1.56	

Изменение эффективной площади $S_{3\phi\phi}$ от угла места *h* определялась по данным наблюдений калибровочных источников на разных *h* и азимутах Aз антенны с введением соответствующих поправочных коэффициентов. В диапазоне *h* от 60° до 90° изменений $S_{3\phi\phi}$ не отмечено и на этих углах поправочные коэффициенты не вводились.

Среднеквадратичные ошибки плотностей потоков включали ошибки измерений антенной температуры. Типичные ошибки значения T_a находились в пределах 5 %. При данной методике наблюдений учитывались также ошибки, возникающие вследствие изменений уровня шумов аппаратуры, вариаций коэффициента поглощения в атмосфере, нестабильности коэффициента усиления радиометра и ошибки наведения радиотелескопа.

Мониторинг на частотах 4.8, 8 и 14.5 ГГц выполнялся на радиотелескопе РТ-26 обсерватории Мичиганского университета в период с 1974 по 2012 гг., данные наблюдений которого были ранее опубликованы и использованы в работах [4, 5]. Мониторинг на частоте 8 ГГц выполнялся с помощью 22-метрового радиотелескопа РТ-22 КрАО в период 2012—2020 гг. Мониторинг на частоте 15 ГГц выполнялся с помощью 40-метрового радиотелескопа Owens Valley Radio Observatory [6] в период 2013—2019 гг.

Фотометрические наблюдения в полосе В проводились с помощью the Small and Moderate Aperture Research Telescope System (SMARTS) в период с 2008 по 2017 гг. Процедура калибровки и обработки представлены в работе [7].

Данные в гамма- диапазоне получены в рамках миссии FERMI на инструменте LAT¹.

3. Численный анализ неравномерных по времени рядов плотностей потоков радиоисточников базы данных КрАО

3.1. Гармонический анализ

Переменность плотностей потоков радиоисточников представляет собой сложное и многообразное явление. Начиная с 1973 г. на радиотелескопе РТ-22 Крымской астрофизической обсерватории проведено более 20 тыс. наблюдений и получены данные более чем для 250 источников на частотах 22 и 36.8 ГГц. По результатам исследований из общего числа источников нами были отобраны те, в которых вариации плотностей потоков имели квазипериодический характер.

В связи с тем, что в основной своей массе наблюдения проводились с интервалами времени 5—7 дней, в ряде случаев они не имели постоян-

¹ http://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/extract_latdata.html

ного шага по времени получения данных. Поэтому для их исследования в работе были применены методы спектрального анализа неравномерных временных рядов. С их помощью удалось свести к минимуму влияние неравномерности временной сетки на вычисляемую периодограмму — оценку спектра мощности.

Одной из часто применяемых на практике оценок спектра мощности является *LS*-спектр [9, 10, 11], математический аппарат которого представлен в работах [12, 13, 14]. В основе его построения лежит аппроксимация временного ряда суммой гармонических функций методом наименьших квадратов. Преимуществом *LS*-спектра считается экспоненциальное распределение отсчетов периодограммы белого шума. С другой стороны, главным недостатком является отсутствие аналитической связи между оценкой спектра мощности и его истинным значением.

Другим свободным от этого недостатка методом анализа является вычисление периодограммы Шустера $D(\omega)$ [15, 16], связанной с истинным спектром мощности $g(\omega)$ и спектральным окном $W(\omega)$ фундаментальным соотношением:

$$D(\omega) = \int_{-\infty}^{\infty} g(\omega') W(\omega - \omega') d\omega'$$
⁽²⁾

Наличие такой связи позволяет производить «чистку» спектра — удаление боковых лепестков и пиков, обусловленных конечностью и неравномерностью временной сетки, а также ложных максимумов, присутствие которых определяется шумом.

Для «чистки» спектра нами был применен метод *CLEAN*, который первоначально разработан для обработки получаемых при апертурном синтезе двумерных карт. Позже его стали применять и в спектральном анализе одномерных временных рядов [17]. Суть указанного алгоритма заключается в последовательном вычитании из «грязного» спектра всех достоверных максимумов. Каждый вычитаемый спектральный пик определяется своей комплексной амплитудой, частотой и спектральным окном, зависящим от распределения временных отсчетов. Все вычтенные пики образуют «чистый» спектр, свободный от ложных максимумов и шумовой компоненты. Процедура «очистки» спектра длится до тех пор, пока в «грязном» спектре не останется ни одного пика, величина которого превосходит некоторый пороговый уровень, зависящий от вероятности обнаружения сигнала в шуме. Этот уровень можно определить, зная вид распределения отсчетов периодограммы шума [14, 18]. Однако, в случае неравномерной временной сетки, нельзя получить строгое выражение для этого распределения. Авторами [19] были получены эмпирические формулы для определенных неравномерных рядов, но их нельзя считать универсальными, так как для каждого конкретного ряда рассматриваемое распределение будет специфическим. Поэтому, чтобы получить порог обнаружения сигнала в шуме, в данной работе для каждого обрабатываемого ряда вычисляется характерное для него распределение отсчетов периодограммы белого шума.

С помощью описанных выше алгоритмов спектрального анализа в кривых блеска различных источников удается выделить колебания различного периода, что будет показано на примере ниже.

3.2. Корреляционный анализ

В то же время в базе данных радиотелескопа РТ-22 Крымской обсерватории имеются записи наблюдений различных источников на нескольких частотах (рис. 1). Определив фазовые соотношения между обнаруженными колебаниями на разных частотах наблюдений, можно получить сведения о свойствах среды, в которой эти колебания распространяются. Для обнаружения временного сдвига между каждыми двумя записями $x_1(t)$ и $x_2(t)$ необходимо найти их взаимную кросс-корреляционную функцию $R(\tau)$:

$$R(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} x_{1}(t) x_{2}(t+\tau) dt.$$
(3)

Так как исследуемые сигналы регистрируются в определенные, вообще говоря, не равноотстоящие моменты времени t_i , то приходится иметь дело с дискретными функциями времени или временными рядами x_i . Кроме того, наблюдения длятся конечный промежуток времени, поэтому рассматриваемые ряды являются конечными. В этом случае нельзя определить корреляционную функцию с использованием определения (3). Поэтому часто пользуются *оценкой* корреляционной функции, которую называют коррелограммой c_m [20].

$$c_{m} = \frac{1}{N-m} \sum_{k=0}^{N-m-1} (x_{k} - \bar{x})(y_{k+m} - \bar{y})$$

$$m = 0, 1, \dots, N-1$$
(4)

Следует отметить, что коэффициент 1/(N-m) в (4) вводится для того, чтобы исключить искажение коррелограммы, связанное с конечностью временного ряда, поэтому такая оценка называется *смещенной*. Для нормализации оценки c_m , ее делят на произведение среднеквадратичных отклонений рядов $\sigma_x \sigma_y$, где

$$\sigma_x^2 = \frac{1}{N-1} \sum_{k=0}^{N-1} (x_k - \bar{x})^2 , \qquad (5)$$

$$\sigma_{y}^{2} = \frac{1}{N-1} \sum_{k=0}^{N-1} (y_{k} - \overline{y})^{2} .$$
 (6)

Сказанное выше относится к наиболее простому случаю равномерного распределения временных отсчетов. Однако используемые нами временные ряды имеют неравномерную временную сетку. Поэтому использование классических методов нахождения оценок взаимных корреляционных функций не представляется возможным.

Один из способов решения этой проблемы состоит в интерполяции неравномерного ряда на равномерную временную ось. По формуле (4) вычисляется оценка корреляционной функции. При этом каждый отсчет, независимо от того был ли он реально зарегистрирован или является продуктом интерполяции, вносит одинаковый вклад в искомую функцию корреляции. Существенным недостатком метода является отсутствие возможности определения теоретической достоверности полученного результата.

Другой подход к определению оценок взаимных корреляционных функций неравномерных временных рядов, свободный от вышеупомянутых недостатков, подробно обоснован в работе [21]. В своем исследовании авторы предлагают использовать т. н. дискретную функцию корреляции DCF (Discrete Correlation Function), определяемую с помощью множества всех возможных корреляций $UDCF_{ij}$ (Unbinned Discrete Correlation Functions) следующим образом

$$UDCF_{ij} = \frac{(x_i - \overline{x})(y_i - \overline{y})}{\sqrt{(\sigma_x^2 - e_x^2)(\sigma_y^2 - e_y^2)}}.$$
(7)

Здесь e_x , e_y — ошибки измерения случайных величин x и y соответственно. Каждому значению $UDCF_{ij}$ соответствует своя задержка $\tau_{ij} = t_i - t_j$. Для вычисления само́й дискретной функции корреляции $DCF(\tau)$ временную ось разбивают на некоторое число интервалов $\Delta \tau$ (бинов), после чего каждому интервалу τ ставят в соответствие среднее всех $UDCF_{ij}$ для которых $\tau - \Delta \tau / 2 \le \Delta \tau_{ij} < \tau + \Delta \tau / 2$.

$$DCF(\tau) = \frac{1}{M} \sum UDCF_{ij}$$
(8)

При выборе размера бина следует руководствоваться поставленными целями, т. к. чем шире бин, тем лучше проводится усреднение (4), но в то же время хуже временное разрешение оси абсцисс, и наоборот.

Часто во время одновременных наблюдений во временных рядах возникают коррелированные ошибки измерений, приводящие к интенсивному ложному пику при $\tau = 0$. Для того чтобы устранить влияние этих ошибок необходимо из множества $UDCF_{ij}$ исключить все элементы, для которых i = j. При этом все остальные отсчеты коррелограммы оказываются свободными от этих ошибок, чего нельзя сказать в случае применения метода интерполяции.

Указанный способ позволяет легко получить стандартное отклонение полученных значений $DCF(\tau)$. В случае, если значения $UDCF_{ij}$ являются некоррелированными внутри данного бина, стандартное отклонение σ_{DCF} определяется дисперсией значений $UDCF_{ij}$ вокруг среднего $DCF(\tau)$

$$\sigma_{DCF}^{2}(\tau) = \frac{1}{N-1} \sum \left(UDCF_{ij} - DCF(\tau) \right)^{2}$$
(9)

Таким образом, методика построения оценок взаимных корреляционных функций [21] обладает рядом существенных достоинств по сравнению с интерполяционным методом. Неоспоримым преимуществом является возможность определения достоверности полученного результата. В нашем исследовании для сравнения использовались оба подхода [20, 21].

Таким образом, разработан пакет программ, позволяющий вычислять оценки спектров мощности различными способами, исключать из них ложные пики, вызванные неравномерностью временной сетки, а также выделять с заданной вероятностью достоверные спектральные максимумы.

Применение этих методов к реальным астрофизическим данным показало, что наблюдаемые кривые блеска, как правило, представляют композицию вариаций на разных временных масштабах: от долговременных трендов (~10 лет и более), наблюдаемых в ~85 % всех источников, до коротко временных вариаций (~1—2 года).

3.3. Вычисление параметров орбит ДСМЧД

Набор параметров ДСМЧД включает в себя определение масс компаньонов — M u m, размер орбиты r, в общем случае эксцентриситет орбиты — e, период обращения — T, периоды вращения центрального тела и компаньона — T_{ep1} , T_{ep2} , Лоренц-фактор γ , время жизни до слияния — t_{cn} .

Прецессия центральной черной дыры в совокупности с центральными областями аккреционного диска, откуда происходят выбросы релятивистского вещества, может происходить за счет возмущения компаньона, двигающегося по орбите с орбитальным периодом $T_{\text{орб}}$:

$$m+M = (4\pi^2 r^3)/(GT_{\text{op6}}^2)$$
, (10)

где *m* — масса компаньона, *M* — масса центральной черной дыры, *r* — радиус орбиты компаньона, *G* — гравитационная постоянная. Выражение (10) получено для круговой орбиты из соотношений небесной механики: $v^2/r = G(M+m)/r^2 u T = 2\pi r/v$.

С другой стороны, угловая скорость прецессии центрального тела Ω_{np} определяется из соотношения

$$\Omega_{\rm np} = (3G \cdot m \cdot \cos\theta) / (4r^3 \omega), \tag{11}$$

где θ — половинный угол конуса прецессии, ω — угловая скорость вращения центрального тела.

Учитывая, что $\Omega_{\rm np}=2\pi/T_{\rm np}$ и $\omega=2\pi/T_{\rm вp}$, соотношения (10) и (11) можно преобразовать к виду

$$T_{\rm BP}T_{\rm TP} = (16\pi^2 r^3)/(3G \cdot m \cdot \cos\theta)$$
(12)

Разделив выражение (10) на (12), перегруппировав и учитывая, что угол раствора конуса прецессии центрального тела 20 в тесных двойных системах, как правило, не превышает (10—20) градусов ($\cos\theta \cong 1$), получим

$$(m+M)/m = 0.75 T_{\rm BP}T_{\rm TP}/T_{\rm Op6}^2$$
 (13)

В случае тесных двойных систем из черных дыр также нельзя исключить того, что из-за сильных приливных воздействий друг на друга может возникнуть ситуация, когда период орбитального движения компаньона совпадет с периодом вращения более массивного центрального объекта или компаньона.

Естественно предположить, что самый большой наблюдаемый период следует отнести к прецессионным движениям центральной массивной черной дыры и связанных с нею центральных областей аккреционного диска.

Самый короткий период можно соотнести периодам вращения центрального тела и компаньона по орбите. В случае 3*C*120 получим соотношение масс

$$(m+M)/m \approx 8.7\tag{14}$$

Другими словами, масса центрального тела в 7.7 раза превышает массу компаньона.

Умножив правые и левые части выражений (10) и (12) соответственно друг на друга и учитывая, что соотношение масс (m+M)/m = 8.7, получим выражение для массы компаньона

$$m = (8\pi^2 r^3) / \{G \cdot T_{\rm op6} (3T_{\rm Bp} T_{\rm np})^{1/2}\}$$
(15)

Наблюдается сильная зависимость массы компаньона от размеров его орбиты. Увеличивая размеры орбиты компаньона, мы увеличиваем его массу, а вместе с ней и массу центрального тела.

Естественно считать, что небольшие значения периодов орбит компаньонов двойных систем из черных дыр связаны с тем, что мы наблюдаем релятивистское движение вещества под небольшим углом зрения. Поэтому периодические изменения в системе отсчета, связанной с центром тяжести двойных черных дыр, будут другими после введения Лоренцфактора Υ и перехода в систему отсета, связанную с АЯГ [22]. Тогда связь между наблюдаемым периодом $P_{\text{набл}}$ и периодом в системе отсчета источника P определяется выражением

$$P \approx (P_{\text{Hadon}} \Upsilon^2) / (1+z). \tag{16}$$

4. Пример использования результатов численного анализа неравномерных по времени многочастотных рядов радиоастрономических данных

На рис. 1 приведены данные многочастотного долговременного мониторинга АЯГ АО 0235+164, полученные в разных частотных диапазонах. Наиболее длинный ряд данных получен на частоте 8 ГГц. На рис. 2, 3 приведены данные долговременного мониторинга на частоте 8 ГГц для 12 АЯГ, имеющих выраженные данные присутствия гармонических составляющих.

Наиболее короткий период, возможно связанный с движением компаньона по орбите вокруг центральной СМЧД, лучше выявляется на высоких частотах 22 и 36.8 ГГц. Это объясняется тем, что мы принимаем излучение из узкого конуса прецессии центрального тела, ограниченного углом между направлением выбросов и наблюдателем. В том случае наиболее высокочастотное излучение возникает из области, находящейся ближе к центральным областям.

В таблице 3 приведены источники, имеющие данные по длительному мониторингу и признаки наличия гармонических составляющих в спектральных плотностях потоков излучения (для объектов, у которых не определена звездная величина, величина приведена в *Near-IR* диапазоне или мЯн). С использованием выражения (2) были определены гармонические составляющие данных длительного мониторинга источника АО 0235+164 на частоте 14.5 ГГц.

Результаты анализа показаны на рис. 1 и приведены в таблице 2. Значение красного смещения АО 0235+164 приведены в работах [23, 24], а величина γ дана в [25].

Рис. 1. Результаты гармонического анализа АЯГ AO 0235+164. Fig. 1. Results of harmonic analysis of AGN AO 0235+164

Таблица 2. Результаты гармонического анализа кривой блеска долговременной переменности источника AO 0235+164.

Table 2. The results of a harmonic analysis of the light curve of the long-term variability of the source AO 0235 + 164

Система отчета:	Период	Период	Пероод	Период	Период
	Т, годы	Т, годы	Т,годы	Т, годы	Т, годы
связанная с наблюдателем	16.15	8.08	5.73	3.78	2.82
	(0.05)	(0.09)	(0.13)	(0.05)	(0.06)
связанная с излучающим объ-	3322	1662	1178	777	580
ектом $P_{\mu cr} \approx (P_{\mu a \delta \pi} \Upsilon^2) / (1+z)$	(68)	(34)	(24)	(16)	(12)

Таблица 3. Источники длительного мониторинга.

Table 3. Sources	of	long-term	monitoring
ruble 5. boulees	or	iong term	monitoring

N⁰	Источник	Источник	Другое	Опт.	Красное	Звездная
п/п	B1950.0	J2000.0	название	класс	смещение	величина
1.	0003-066	0006-0623	NRAO 005	QSO	0.347	17.14
2.	0048-097	0050-0929	OB-080	QSO	0.635	15.31
3.	0133+476	0136+4751	DA 55	QSO	0.859	19.25

VOLVACH A. E. et al. Double supermassive black holes as possible sources... ВОЛЬВАЧ А. Е. и др. Двойные сверхмассивные черные дыры как возможные источники...

N⁰	Источник	Источник	Другое	Опт.	Красное	Звездная
п/п	B1950.0	J2000.0	название	класс	смещение	величина
4.	0234+285	0237+2848	CTD 20	QSO	1.207	16.99
5.	0235+164	0238+1636	AO	QSO	0.940	15.0
6.	0336-019	0339-0146	CTA 26	QSO	0.852	17.33
7.	0430+052	0433+0521	3C 120	RG	0.033	7.9 (NIR)
8.	0458-020	0501-0159	4C-02.19	QSO	2.286	18.5
9.	0528+134	0530+1331	S 0528+134	QSO	2.060	19.35
10.	0552+398	0555+3948	DA 193	QSO	2.365	12.955
11.	0642+449	0646+4451	OH 471	QSO	3.396	14.494
12.	0716+714	0721+7120	—	QSO	0.300	13.39
13.	0804+499	0808+4950	OJ 508	QSO	1.435	18.626
14.	0851+202	0854+2006	OJ 287	BL Lac	0.306	12.79
15.	0923+392	0927+3902	4C 39.25	QSO	0.698	16.77
16.	0954+658	0958+6533	S40954+65	QSO	0.386	12.42 (NIR)
17.	1101+384	1104+3812	MRK 0421	G	0.031	8.31
18.	1226+023	1229+0203	3C 273	QSO	0.158	11.628
19.	1253-055	1256-0547	3C 279	QSO	0.536	9.9 mJy
20.	1308+326	1310+3220	OP 313	QSO	0.997	14.15
21.	1334-127	1337-1257	PKS 1335-127	QSO	0.539	16.22
22.	1404+286	1407+2827	OQ 208	RG	0.077	10.29
23.	1510-089	1512-0905	PKS 1510-089	QSO	0.360	-
24.	1606+106	1608+1029	4C +10.45	QSO	0.672	18
25.	1611+343	1613+3412	DA 406	QSO	1.401	12.85 (NIR)
26.	1633+382	1635+3808	4C 38.41	QSO	1.813	17.438
27.	1638+398	1640+3946	NRAO 512	QSO	1.666	18.86
28.	1642+690	1642+6856	4C +69.21	QSO	0.751	19.38
29.	1725+044	1728+0427	1725+044	QSO	0.296	16.24
30.	1739+522	1740+5211	4C+51.37	QSO	1.379	16.73
31.	1730-130	1733-1304	PKS 1730-13	QSO	0.902	18.78
32.	1741-038	1743-0350	1741-038	QSO	1.054	17.98
33.	1749+096	1751+0939	4C +09.57	BL Lac	0.320	15.57
34.	1803+784	1800+7828	—	BL Lac	0.680	15.46
35.	1921-293	1924-2914	OV-236	QSO	0.352	15.07
36.	2145+067	2148+0657	4C+06.69	QSO	0.999	15.06
37.	2155-304	2158-3013	PKS 2155-304	QSO	0.116	34.45 мЯн
38.	2200+420	2202+4216	BL Lac	BL Lac	0.069	7.9 (NIR)
39.	2223-052	2225-0457	3C 446	QSO	1.404	14.48
40.	2230+114	2232+1143	CTA 102	QSO	1.037	16.7
41.	2251+158	2253+1608	3C 454.3	QSO	0.859	12.69

Рис. 2. Долговременный мониторинг спектральных плотностей потоков АЯГ AO 0235+164. Fig. 2. Long-term monitoring of spectral flux densities of AGN fluids AO 0235+164

VOLVACH A. E. et al. Double supermassive black holes as possible sources...

Рис. 3. Долговременный мониторинг спектральных плотностей потоков АЯГ на 8 ГГц. Fig. 3. Long-term monitoring of the spectral density of AGN fluxes at 8 GHz

Рис. 4. Долговременный мониторинг спектральных плотностей потоков АЯГ на 8 ГГц. Fig. 4. Long-term monitoring of the spectral density of AGN fluxes at 8 GHz

VOLVACH A. E. et al. Double supermassive black holes as possible sources... ВОЛЬВАЧ А. Е. и др. Двойные сверхмассивные черные дыры как возможные источники...

Как обычно в таких случаях минимальное значение периода в системе считается орбитальным, а максимальное — прецессионным. При таких условиях по формулам (12—15) можно оценить значение масс компаньонов и радиус орбиты. Результаты сведены в таблицу 4. Наблюдается очень резкая зависимость массы компаньонов от величины радиуса орбиты (формула 15).

> Таблица 4. Значения масс и радиусов орбит. Table 4. The values of the masses and radii of the orbits

Радиус орбиты компаньона	Масса компаньона	Масса центрального объекта
2.0·10 ¹⁸ см	$2.4 \cdot 10^9 \mathrm{M_O}$	$1.8 \cdot 10^{10} \mathrm{M_O}$
1.5·10 ¹⁸ см	$10^{9} M_{O}$	$0.7 \cdot 10^{10} \mathrm{M}_{\mathrm{O}}$
10 ¹⁸ см	$3 \cdot 10^8 \mathrm{M}_{\mathrm{O}}$	$2.3 \cdot 10^8 \mathrm{M}_{\mathrm{O}}$

Примечание: Из-за сильного приливнового взаимодействи между компаньонами принимается $T_{ep}=T_{op6}$.

Из таблицы 4 видно, что объект АО 0235+164 является очень массивной ДСМЧД и может быть сравнимым по массе с хорошо изученной ДСМЧД ОЈ287 — перспективного кандидата в мощные излучатели гравитационных волн (ГВ).

5. Заключение

1. В плане выполнения программы по поиску двойных систем из сверхмассивных черных дыр ДСМЧД среди ярких АЯГ отобран 41 радиоисточник.

2. Предложены методики нахождения гармонических составляющих в долговременных рядах данных АЯГ, определения кросс-корреляционных функций между различными частотными диапазонами и определения параметров систем, состоящих из ДСМЧД.

3. На примере АЯГ АО 0235+164 показана эффективность действия предложенных методик по определению параметров ДСМЧД.

4. Полученные данные будут использованы при работе по нахождению мощных источников гравитационно-волнового излучения среди ДСМЧД.

Благодарности

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта №19-29-11005. Авторы статьи выражают благодарность персоналу РТ-22 КрАО РАН за помощь в проведении наблюдений. В исследовании использованы данные программы мониторинга 40метрового радиотелескопа OVRO [6], которая частично поддержана грантами HACA NNX08AW31G, NNX11A043G, NNX14AQ89G и NSF, а также грантами AST-0808050 и AST-1109911.

Список литературы

- 1. Dev L., Gopakumar A., Valtonen M. et al. The Unique Blazar OJ 287 and Its Massive Binary Black Hole Central Engine // Universe, 2019, vol. 5, p.108.
- Sun Yu-Tao, Liu Jie-Ying, Liu Jin-zhong, Ai Yan-Li, Zhou Ming, Qiao Er-lin. A Research on the Gravitational Wave Radiation of OJ 287 // Chinese Astronomy and Astrophysics, 2011, vol. 35, p.123.
- Ефанов В. А., Моисеев И. Г., Нестеров Н. С. Обзор внегалактических радиоисточников на длине волны 1.35 см // Изв. Крым. астрофиз. Обсерватории, 1979, т. 60, С. 3—13.
- Volvach A. E., Volvach L. N., Kut'kin A. M., Larionov M. G. et al. Multi-Frequency Studies of the Non-Stationary Radiation of the Blazar 3C 454.3 // Astronomy Reports, 2011, vol. 55, no. 7, pp. 608–615.
- Vol'vach A. E., Kut'kin A. M., Larionov M. G. et al. A prolonged flare in the blazar 3C 454.3 // Astronomy Reports, 2013, vol. 57, no. 1, pp. 46—51.
- 6. Richards J. L., Max-Moerbeck W., Pavlidou V. et al. Blazars in the Fermi era : the OVRO 40m telescope monitoring program // ApJS, 2011, vol. 194, pp.29–51.
- 7. Bonning E., Urry Megan C., Bailyn C. et al. SMARTS optical and infrared monitoring of 12 gamma-ray bright blazars // The Astrophysical Journal, 2012, vol. 756, no. 1, pp. 1–16.
- Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P. // 1992, Numerical Recipes in C (2nd ed.; Cambridge : Cambridge Univ. Press).
- Wen L. et al. A Systematic Search for Periodicities in RXTE ASM Data // Ap. J. S., 2006, vol. 163, pp. 372–392.
- Claudi R. U. et al. Asteroseismology of Procyon : Preliminary results from SARG, 2004 // Co. Ast., vol. 145, pp. 53–54.
- 11. Lanza A. F., Rodono M., Zappala R. A. Fourier analysis of spotted star light curves as a tool to detect stellar differential rotation // A&A, 1993, vol. 269, pp. 351–354.
- Barning F. J. M. The numerical analysis of light curve of 12 Lacertae // Bull. Astr. Inst. Neth., 1963, vol. 17, no. 1., pp. 22–28.
- Lomb N. R. Least-squares frequency analysis on unequally spaced data // Astrophys. Sp. Sci., 1976, vol.3 9, pp. 447–462.
- 14. Scargle J. D. Studies in astronomical time series analysis. 2. Statistical aspects of spectral analysis on une-venly spaced data // Ap. J., 1982, vol. 263, pp. 835–853.
- Deeming T. J. Fourier analysis with unequally-spaced data // Astrophys. And Space. Sci., 1976, vol. 36, pp.447–462.
- 16. Edelson R. A., Krolik J. H. The Discrete Correlation Function : A new method for analyzing unevenly samled variability data // Ap. J., 1988, vol. 333, pp. 646–659.
- 17. Roberts D. H., Lehar J., Dreher J. W. Time series analysis with CLEAN. I. Derivation of a spectrum Astronomical Journal, 1987, vol. 93, pp. 968–989.
- Carbonell M., Oliver R., Ballester J. L. Power spectra of gapped time series: a comparison of several methods // Astron. and Astrophys, Vol. 264, pp. 350–360.
- 19. Baliunas S. L., Horne J. H. A prescription for period analysis of unevenly sampled data, 1986 // Ap. J., vol. 302, p. 757–763.

VOLVACH A. E. et al. Double supermassive black holes as possible sources... ВОЛЬВАЧ А. Е. и др. Двойные сверхмассивные черные дыры как возможные источники...

- 20. Витязев В. В. Анализ неравномерных временных рядов : учеб. пособие. СПб. : Изд-во С.-Петерб. ун-та, 2001. 68 с.
- Edelson R. A., Krolik J. H. The Discrete Correlation Function : A new method for analyzing unevenly samled variability data, 1988 // Ap. J., vol. 333, pp. 646–659.
- Rieger F. M. Periodic variability and binary black hole systems in blazars // AIP Conference Proceedings, 2005, vol. 745, pp. 487–492.
- Rieke G. H., Grasdalen G. L., Kinman T. D., Hintzen P., Wills B. J., Wills D. Photometric and spectroscopic observations of the BL Lacertae object AO 0235+164 // Nature, 1976, vol. 260, pp. 754–759.
- Cohen R. D., Smith H. E., Junkkarinen V. T., Burbidge E. M. The nature of the BL Lacertae object AO 0235+164 // Astrophysical Journal, vol. 318, pp. 577–584.
- Vol'vach A. E., Larionov M. G., Vol'vach L. N. et al. Physical Characteristics of the Blazar AO 0235+164 // Astronomy Reports, 2015, vol. 59, no. 2, pp. 145–155.

Информация об авторах

Вольвач Лариса Николаевна, кандидат физико-математических наук, старший научный сотрудник ФГБУН «Крымская астрофизическая обсерватория РАН», пгт. Научный, Крым.

Вольвач Александр Евгеньевич, доктор физико-математических наук, заместитель директора по научной работе ФГБУН «Крымская астрофизическая обсерватория РАН», пгт. Научный, Крым.

Ларионов Михаил Григорьевич, доктор физико-математических наук, заместитель руководителя Астрокосмического центра Физического института им. П. Н. Лебедева РАН, Москва.

Аллер Марго Ф., доктор философии, научный сотрудник Радиообсерватории Мичиганского университета, Анн Арбор, США.

Аллер Хьюдж Д. научный сотрудник Радиообсерватории Мичиганского университета, Анн Арбор, США.

Information about the authors

Larisa N. Volvach, PhD. Sci., FSBSI "Crimean Astrophysical Observatory of RAS", Nauchni, Crimea, Russian Federation.

Alexandr E. Volvach, Dr. Sci., FSBSI "Crimean Astrophysical Observatory of RAS", Nauchni, Crimea, Russian Federation.

Michail G. Larionov, Dr. Sci., Astro Space Center, P. N. Lebedev Physical Institute, RAS, Moscow, Russian Federation.

Margo F. Aller, PhD, Research Scientist, Department of Astronomy, University of Michigan, Ann Arbor, USA.

Huge D. Aller, PhD, Research Scientist, Department of Astronomy, University of Michigan, Ann Arbor, USA.