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Annomayun: Paccmompensvt snekmpuieckue u MAacHuUmHvle NOBEPXHOCTIHbIE NAA3MO-
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1. Introduction

The slow surface plasmons in metallic films and along metallic surfaces
are usually considered without dissipation, so the dielectric constant of metal is
real and negative. In this paper we consider the symmetric lossy plane-layered
structures with metallic and dielectric layers and two-dimensional conductive
films or two-dimensional electron gas with tensor conductivity. We use as exam-
ple the graphene conductivity tensor, and for metallic layers we use the Drude-
Lorentz model. We also introduce the surface conductivity for thin metallic and
dielectric films. The goals of this paper are to get the conditions for existence of
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forward and backward waves, to get the conditions for existence of fast and low
surface plasmons (SPs) and to determine the connection of dispersion equation
(DE) or SP existence with the plane wave diffraction without reflection.

2. Problem Statement

The forward and backward plasmons are possible in symmetrical struc-
tures without dissipation [1-3]. As in [1-3] the dissipation is not considered,
here we show, that there are also in dissipative structures. If the phase and ener-
gy movement directions are matched, the plasmon is forward, but if the other
case — backward. We take dielectric permittivity (DP) of metal in the form

&w)=5, - /(a)2 _ ia)a)c), &)=, -’ {? ~ioo,), where interband transi-
tions and the polarization of the lattice are taken into account in ¢ . We will
continue to assume this value is real, characteristically up to optical frequencies.
Then the metal model without dissipation corresponds to the zero frequency of
collisions @, =0. The backward surface plasmon (SP) in this case corresponds
to the anomalous negative dispersion. In the case @, # 0 it is impossible to

classify backward surface plasmon (BSP) by anomalous negative dispersion or
negative group velocity (GV). In this case, the SP character (backward or for-
ward) is determined by the direction of the Pointing vector relative to the

movement of phase. We consider the DP ¢, as real, i.e. we not take into ac-
count the dispersion and therefore dis_sjpation. There are the ratios:
k? +k2+k? =kZe(w) in metal and k? +k? +k? =kiz, in dielectric for the finite
along the y-axis structures. If there is vacuum instead dielectric, that &, =1, and

we denote. We also consider the symmetric on y functions based on the type
cos(k,y) and use the decompositions

L . L R
The upper index “e” corresponds to E-SP (TM-waves), for which H _=0. The
Superscript “h” corresponds to H-SP (TE-waves), for which H, =0. Subscript
“@” corresponds to an electric wall at the center E, =0, i.e., the taking of the
sine in (1). Subscript “m” corresponds to the magnetic wall, i.e. taking the co-
sine. For example, the amplitude A; corresponds to even function E, of z. Fur-
ther, we use the value k, =7z/w. In the case w—>oo the relations are accurate,

and the structure of the plane-layered. With a large but finite width we get some
approximation working better than more w/t. Strictly, these structures can be
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analyzed by the method of integral equations defined on the cross section, using
the metal decomposition of type (1) for functions with different
K, =(2n-1)z/w and k,, =,/kie—k—kZ . For completeness we should add

the functions with k,, =(2n-1)z/t and k , =/k?s k2 —k2 . We consider that
k, =k —ik]. In dissipative structures the SP forward if k’k; >0, and backward
t, if klk!<0.We introduce normalized to the impedance of the vacuum
Z, =11, 15, Wave impedance p° =k, /(k,e) for the E-SP and p" =k, /k, for H-
SP in the metal. For dielectric we do the substitution & — &, and denote imped-

ances 3¢, 5". For vacuum we do the substitution & —1 and denote o5, oo, The
propagation constants also denoted by the symbols e and h. For SP with an elec-
tric wall in the center the normalized input impedance at the border of the metal
film 1is p"(t/2)=ip“" tan(k,t/2), therefore, the dispersion equations (DEs)

are pl" —ipt"tan(k,t/2) and correspond to even components (with respect to

z-components) and odd with respect to one z-component. Typically, these SPs
are classified as the even with respect to the transverse component E,, H,, and

are called symmetric [1]. For SPs with magnetic wall in the center of the metal
film 1 the normalized input impedances at the border are

pEM(t/2)=—ip®" tan(k,t/2), and the are DES p" = —ip" /tan(k,t/2). This
DEs are called antisymmetric. For structure 2 the input impedance p"(t/2)
should be transformed to the thickness of the dielectric:
Cnlitan(k,t/2)]" +ip®" tan(k,d
) = @ 12)= e 2 2 i tanla). @
P iptitan(k,t/2) tan(kzd)
The DEs (2) describe the odd (the sign “+”) and even (“—) SPs. Des for struc-
ture 4 are obtained from (2) by substitutions of the parameters of metal on the
dielectric parameters and vice versa. The DEs for hollow waveguide 3 without
dielectric are resulted from the conditions p®" = p{"[itan(k,,t/2)]". It is very

interesting if there are the dielectric films on the wide walls of the waveguide 3.
This case corresponds to DE (2) in which one must change the properties of a
metal and vacuum. Let us denote the input impedance of all structures on the
last partition of boundaries as . If boundary is bordered by vacuum, the DE

can be written as
ke = koy1- [ ] (3)

The upper sign in (3) corresponds to E-SP and lower — to H-SP. If the boundary
is bordered with metal, then
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K =k L-[e@)or F K =koy1-[o]” - ()

Denoting p" = p'+ip", we see from (3) that that in the dissipative struc-
tures (o’ >0) the E-SP is forward if the input impedance is inductive ( p" >0),
and it is

0.0
T W L U M M ) ) L)
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

k' /k
x""p

Fig. 1. Forward (curves 1, 3, 5) and backward (symbol B, curves 2,

4, 6) plasmon-polariton branches for electric antisymmetric (1, 2, 3,

4) and symmetric magnetic (5, 6) of the plasmons in the layer of 50
nm (1, 2), 100 nm (3, 4) and 10 nm (5, 6).

Puc. 1. [psimast (xpussie 1, 3, 5) u o6paTHas (cumBoi B, kxpussie 2,
4, 6) IIa3MOH-TIOJISIPUTOHHBIE BETBH JJISI DJIEKTPUIECKHX
aHTHCHMMeTpHYHBIX (1, 2, 3, 4) 1 CHMMETPUYHBIX MarHUTHBIX
(5, 6) mmazmonos B cioe 50 uM (1, 2), 100 5M (3, 4) 1 10 5M (5, 6)

backward, if the impedance is capacitive (p”" <0). Since the input impedance

depends on the square of the wave number (3), the following inequality must be
preserved for this type of E-SP. It is convenient to take the positive direction in
the direction of the movement phase, i.e. k/®" 0. Then for forward E-SP

p">0 at k"®" 5o, and for backward one ,"<o at k" <g. For H-SP (3) and
the second of the relations (4) we see that H-SP is direct when p” <0 and back-
ward when p”" >0, because the impedances in they DEs are replaced by admit-
tances. Indeed, for E-SP we input complex number z =1-p'? + p"? —2ip'p", Which
stands under the sign of the square root. The branch of root specified by condi-
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tion Re(ﬁ)> 0 Yyields the above conditions. For the first equation (4) we have

7= I::I-_(plgl+pﬂgﬂ) (gp p!gﬂ)]

—2i(p's" + p"e"\ep" — p's").
Here &' <0, £">0, p'>0. Obviously, SP is forward, if Im(z)<0, and back-
ward if Im(z)>0. Because &p"—p'e" <0, for a backward SP it is required

n_n

". Let consider the simplest case of E-SP
along  the dielectric  waveguide  with  metal plates. Here
p=pt =k (egko ) fitan(kets2)]". We write kst/2=i8 =ity/(k¢ f —kZe, /2 and
consider the SP as slow, i. e. k’* >k,./z, , While the loss is small: 6 =¢'-i¢",
0" <<¢ . Then in the odd case
. §’sin(2§’)—§"sinh(2¢9”) §’sin(2§’)

p /p = ~! H ~!/ ~” H ~! ~ ~/ H ~I ~!/ '

6'sinh(20")+6"sin(26') ~ (26" +sin(26" o

This condition is satisfied for the slow SP near the plasmon resonance at the
frequency o, =w,/\/s_+1, for which the ratio |¢/|/&" is not very large, because
at o~ w, We have

’

&

_o0le o )"
& o +al(s +1) w,
The typical values are ¢ ~10-20, w,/®, ~10°-107°. In the even case

ﬂ" 0’sm(29 )+ 6?”smh(2¢9 ) —§’sin(2§’)
oo S|n(249 ) 49’smh(26"’) (25'—sin(2§'))§”
therefore, the inequality cannot be.

3. Results
Consider the DE for the metal strip waveguide. We have the DEs:

& —gtanh (6’ & tanh (5)
tanh & tanh
", & —tanh?( , 1- gtanh (6)
1—tanh2(0) 1-tanh?(9)
Here @ is following from the same formula, but Wlth DP of metal. In the

absence of dissipation we have ¢<0, and SP k¢, is infinitely slow at the fre-

quency where g”tanh?(9)=1, i.e. at w=aw,, <w,/\/s +1. This frequency
decreases with decreasing t. In pursuit of this frequency from below always
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£ > tanh?(9). Above this frequency there is the forbidden band of bandgap. Be-
hind her in the field 0< & <1 the polariton fast: k&, ~ k,ve[l—s(1—&)/(2tanh?(0))),
and near the frequency of the plasmon resonance @~®, we have

ke ~ ko =koyJ@b 1P =5 P is weak slow at low frequencies, where
k¢ <kt . A strong slowdown beginning to emerge near the frequency

o, =w, /s +1 where tanh?(9)=¢? =1. At the approach to it from below the
dispersion is normal and performed &* >tanh?(). It's made in the case o> a,,
but the dispersion is anomalous: the retardation decrease with the increase in
frequency. Higher it the dispersion becomes anomalous and negative. At the
frequency ®,/\e, -1, where =1, the polariton becomes fast. If you are not
getting comprehensive , i becomes leaky, there are radiation losses. At the con-
dition w>a,l e -1 the term tanh?(¢) is complex, the polariton becomes leaky,
and the losses arise. In the point »_ the dispersion curve is not differentiable.
Consideration of losses leads to its differentiability, the slowdown in the neigh-
borhood of frequencies o, is finite, and GV goes through infinity and changes
the sign. This is also the case for k;, lower @, and in the bandgap the propaga-
tion occurs for k¢ with anomalous negative dispersion. Polariton k{, may not
be slow and surface. SP is very slow k) at low frequencies, when
—stanh?(9)>>1 and tanh?(9)<<1. However, at these frequencies one should take
into account the dissipation. SP has forward and backward portions of the dis-
persion branches. It has no component g and does not interact with the longi-

tudinal electron beams.
SP k¢ for structure 2 can be backward when the dielectric layer trans-

forms the inductive impedance to the capacitive Fig. 1. A suitable analytical
condition is quite cumbersome, so here it omitted. Really thin metal film wave-
guides of the type 1 and 2 should be considered in some dielectric medium with
DP &. To do this, in all relationships you should make the change
k, — k =k,~/z . Then the direct SP moving in the film 1 and greeting on your
way the strip of section 2, when the waveguide 1 is overlaid with dielectric
plates with a DP ¢, can get the focusing if he becomes the backward. It should
be noted that the initiation of SP by the finite source, e. g. a laser beam through
a prism gives divergent SP, which, after such metalens will be converging. It

should be noted that for the waveguide 3 the above obtained relations are exact
in the approximation of perfectly conducting narrow walls.
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4. Conductivity of 2D Structures

In thin metal layers (films) || <d there are slow surface plasmons (SP) of

the electric type in case of presence in the plane of symmetry z = 0 of the mag-
netic wall, and the slowdown increases with decreasing thickness d. For appli-
cation the films with a thickness of a few nanometers are interesting. In the case
of the plane of symmetry of the magnetic wall electric E-SP slower (lower fre-
guency plasmon resonance ws) than E-SP electric wall in the center z=0 of the
film [1, 5, 6]. In the approximation of absence of dissipation E-SP with electric
wall has two branches, suitable to the frequency below (with normal dispersion)
and the top (with the anomalous negative dispersion). The latter case corre-
sponds to a backward wave [1]. However, when we have a dissipation, the
branches are closed, and in the vicinity of the plasmon resonance ws both from
the bottom and top SP are direct, and the loss during the motion along the x-axis
high: k!(w,)=~k.(@,) [5, 6]. The polarization is always possible to choose so that

ky=0. For forward SP k:k; >0, and for the backward one k’k’ <0, i.e. the energy
(attenuation of waves) moving back to phase because k =k —ik’. We denote

the film thickness t = 2d. A conductive film is two-dimensional, if its thickness
is significantly less than the mean free path (t <<,) and penetration depth of the

electromagnetic wave (¢<<¢ ). Usually in this case also t<<J, where A is the
wavelength in vacuum. This structure is called two-dimensional electron gas
(DEG) and describes a two-dimensional (surface) conductivity o=, where ¢

is the bulk conductivity of the solid sample, which determines the current densi-
ty J=c¢E. In view of the above the DEG is described by the surface current
density j, is determined by the conditions J(r;,v)=Js(rs)o(v)= oEs(rs.0)5(v),
where the index S indicates the projection of the vector on the surface of the
film, and v is the normal coordinate is counted from it. From the point of view
of electrodynamics such film has not a finite transverse size, and the volume
integral is reduced to surface one. The conditions for DEG depend on the tem-
perature, frequency, purity of the sample, the surface of the film and are usually
granted for good conductive metals with thicknesses from a few to tens of na-
nometers. Usually the DEG films are located between the dielectric layers or on
such layer. The use of bulk materials conductivity or permittivity for estimation
of DEG parameters is an approximation. A rigorous approach requires the solu-
tion of complex quantum tasks including borders and dielectric layers, because
the density of states, frequency of collisions, the number of modes of conductiv-
ity, defining the conductivity o, substantially change it at small thicknesses, so
that the ratio o=¢t is strictly true for thick films. However, there is a natural
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DEG structure, e. g., graphene [7-11], graphenes [12] and some others. For gra-
phene o is defined in several works [7—11] based on the approach of Kubo-
Greenwood and the method of dynamic Green’s functions. Tensor dynamic
conductivity of graphene when exposed to a plane monochromatic wave is de-
termined by the integral in momentum space [7—11]. His approximate evalua-
tion on the part of the Brillouin zone in the vicinity of two Dirac points in the
approximation of linear dispersion E(p)=-tv.|p|, p=#q, v, ~c/300 leads to a

simple formula Kubo [5]: 6=6intatiner Where

i (@, 41,0, T )= , )
= —2ie’k,T[zn* (@ —im, )] In(cosh(u/(2k,T)))
O-inter(a)’ H, @, 'O) = (8)

= —ie? 1(arn)In([2| - (0~ i, )1 [2] + (0 - i, )

For (7) and (8) the Fermi-Dirac function f(E)=[exp(E — z, )k T +1]* is used
in with u. is the chemical potential. To take into account the spatial dispersion in
[11] under the approximation of Bhatnagar-Gross-Krook (BGK) with account of
drift current and the relaxation time approximation (RTA) model for tensor

conductivity are given. The BGK model gives the conductivity tensor with
account of spatial dispersion. The RTA model gives some differ results.

5. Plane Wave Diffraction

Let consider the located in vacuum conductive DEG film, the center of
which is located at z=0. Let an electromagnetic wave E(t,r)=E, exp(ict —kr) in
vacuum, in which k* =kZ, falls at the considered film with tensor surface con-
ductivity 5 = £/z, where z,=/u,/, =120z Q. The magnetic field is determined
by the same dependence with amplitude H.=kxE./Z, \We solve the problem by

two ways. The first is based on electrodynamic Green's function (GF). The se-
cond will use the mode matching technique. The wave creates in the film the
surface current density Js(X,y), which we write using the volumetric current

density in the form J(x,y)= Js(x,y)d(x). We take the scalar GF [13], denoting
R=r—r» R=|R|=VX2+Y?+Z?, X =(x=X), Y=(y-y) 2=(z-2), k. = ks —k2—ki? .
GF is the decomposition on non-uniform plane-wave, including evanescent
ones in the case k;”+k;* >k;. We have an electric vector-potential, equal to the
integral over the surface from G(r-r)J,(r;), Where we have moved from the

volume integration to a surface integral over the infinite plane (x,y). In force of
local link 3 (x,y)=6E4(x,y) the integral is calculated explicitly and has the form:
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A(r)=6E.g, g =exp(—ikx—ik,y—ik,|z])/(2ik,). Here Es is the amplitude of the to-
tal tangential electric field on the surface. Hence, we find the tangential electric
E, :(VV-A+k02A)/(ia)go) and magnetic fields H, =vxA of diffraction with am-
plitudes Epy (1) = Efypa exp(— ikxx—ikyy—ikz\z), were

£ kf(a E,+0,E )+kxky(0'yXEx+0WEy)—k§(O'XXEX+O' Ey),

XX —x Xy -y Xy
xd

2wekK,
E - k;(O’WEy +0'yxEx)+ kxky(O'xyEy +o,E )— koz(<)'WEy +0'yXEX) i
v 20ekK,
Further we believe oy,=ayx. The amplitude of the full field on the tape is equal to
the sum of the respective amplitudes of the incident and diffracted fields:
E, =E, +E,, E, =E,, +E,. These conditions lead to a system of linear algebra-
ic equations (SLAE) with has two unknown amplitudes E, and E,: AE=E,,
E=(E.E,), E =(EpEp), allowing to express the full amplitude using the am-
plitude of the incident field. As a result E, = AJE,, + AJE,,, E, = AJE, +AJE,,,
where we have introduced the matrix elements of the inverse matrix A:

A, = [ (2 K2 e, —k k& 2Kk, ) A, =[(k2—K2 ), —kk &, J(2koK, ).
For the rest of the coefficients matrix we should make the change x <> y. When
choosing a polarization Eq=0, i. e. along the x axis and in the normalization Ex,=1
we have the reflection coefficient R = E ,, transmission coefficient T=1+R , and

the coefficient of transformation of the orthogonal polarization Q = E- The solu-

tion to the problem of diffraction takes place if the matrix of SLAE is not a special,
i.e. det(A)¢ 0. We have the relations R=-1+A; = -1+ a22/det(A), Q=A;,
which we can present or in the following forms:

_ k? (O’XXA;; + axyA;xl)+ kxky(ayxAzx1 + O'WA;XI)— kOZ(JXXA;(l + nyA;xl) ,

R 206K,
o Kl s i)k oA+ o A)Kilo, A+, L),
206k,

The condition det(A)zo is the dispersion relation (DR) for surface plasmons
along the film. It determines the dispersion k, = f(k,,k, ), or @ = o(ks) believing
that DR resolved relative to the wave number ky. Because of the Fresnel equa-
tions we have k, =/k2~k? -k’ . Because the frequency is real, we have the condi-
tion 1m(f(k,.k, ))=0. Therefore we have two real equations to determine the two
complex quantities, for example, k. and k, (equation Fresnel allows you to
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choose any pair components of vector k). The goal is to get the dependencies
k, =k, (ky): k, =k,(k,). However, in the DR these values relate and depend on

directions of phase and energy. Let SP has the complex surface wave vector
k, =k —ik?, the real part of which (indicated by bar) forms an angle ¢ with the

x axis. The direction of phase movement is determined by the unit vector
Ne, =K /K, where k¢ =|ki|=k*+k?*. Then k,=k{cos(p), k| =k{sin(p). The
unit vector n,. =kg/kg defines the direction of motion of energy that moves in
ks

the direction of attenuation of the wave. Here k¢ =|ks|=1/ki*+kJ* . Also we have
Noe =§/\§, where S is the integral of the Poynting vector along the transverse

coordinate z. The specified relationship exists not only for the surface plasmon,
and (as a limit) for deriving polariton. In the General case kOE¢k0pand

Koe # V4 /‘vg

, where v, =V, a(k) is the vector group velocity (GV). Because of

dissipation the Leontovich—Lighthill-Rytov theorem [14] is not performed, and
the GV does not define the movement of energy. Let the energy direction is de-
termined by the angle  relative to the x axis. Then k] =kZ cos(y), k! =ksin(w).

At the same time ks = x.k, +Y,k,, and complex DR is splitting into two real ones:
Re(det(A))=0, Imldet(A))=0. By setting the direction of the surface plasmon
n, =kj /K|, calculating the Poynting vector S and adding these two real equa-

tions by the third n. =S/, it is possible to define the k;, k!, and the complex

wave vector kg =kgn, —ikin . Its real partk; is the phase constant along the mo-
tion direction, and a negative imaginary part k:determines the energy flow and

attenuation in the direction ne. If n,ne >0, then the direction of movement of

phase and energy form an acute angle, and the plasmon is forward. If n,ng <0,
then the direction of movement of phase and energy form an obtuse angle, and
the plasmonis is backward. If ¢ =y than SP is forward kiki>0. If y=ptx,
then kike <0, and plasmon is backward. In this case ¢ is scalar, and you can al-
ways choose the x axis so that k,=0. Some results for E-SP are given in Fig. 2
for graphene film using the spatial dispersion model based on BGK approach
and without one. Fig. 3 presents the reflection and transmittance for hyperbolic
metamaterial (HMM) layer [15, 16] with different angle ¢ between normal and

anisotropy axes.
For the problem of diffraction the values k and k, are real and determine
the angle ¢ of inclination of the plane falling to the axis x: ¢ = arctan(k, /k, ).
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Fig. 2. Deceleration n’ of E-SP for graphene film at T=300 K,

depending on the circular frequency (eV): u.=0.3 eV, ¢=1 (curves
1); uc=1eV, e=1 (2); uc=1eV, ¢=3 (3) with spatial dispersion (solid
curves) and without (dashed curves).
Puc. 2. 3amennenune n’ E-SP st rpadeHOBO# MTeHKH

npu T = 300 K B 3aBHCHMOCTH OT KpyroBoii 4actotsl (3B):

pc = 0,3 3B, € =1 (kpusbie 1); pue = 1 3B, e=1 (2); p. = 1 3B,
€ =3 (3) ¢ mpocTpaHCTBEHHON AnCTIepcHeil (CIIIOMHbIE KPUBBIE)

n Ge3 Hee (IUTPUXOBBIE KPHUBEIE)

While defining the scattered field value g - [kz_kz_k2 is real, because
z 0 X y

kf+k7 <ks. When you go to task about free waves, since non-selfadjoint
boundary value problem, the values k,, k,, k, become complex. Such waves
should be considered quasieigen and gliding [4, 17], since the leakage from dis-
sipative two-dimensional film is impossible (the structure of the volume and
there is no stored energy). The reliance of exp(~ik,|z|) this means that k! <0, i. e.
the phase and the energy from both parties are moving from a vacuum to the
film. This condition is necessary to impose for choice of branches of the root.
Leakage is only possible from the active film, for example, from non-

equilibrium (“pumped”) graphene with o’<0. Writing k, =k -k =w,
w=u+iv=k?+k* —ki* +2ikik!, we have k;:—\/i\/u2+v2+ui/2, k;’:i\/i\/u%vz—ui/z.

For forward plasmon the point w lies in the upper half plane of complex plane, if
SO u=k2+k!2—k2 <0 (slow plasmon) the root gives k” >0 (surface plasmon). If
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u=ks +ki* —kg >0 (fast plasmon) it is also surface: k”>0. In active film with for-

ward plasmon (condition kgks <0) the wave is leaky (with k! — Vv )20
) and antisurface (k” <0) since the point w lies in the lower half-plane. The case
of the backward surface plasmon in dissipative structure (k;k? <0) is character-

ized by the fact that energy flows into the stricter and phase is leaking. In this
case k! >0, and you should take the wave surface: k’ > 0. This case differs from

the active one by change of sign k,. The case of backward plasmon in active
structure is characterized in that it emerges at an obtuse angle to the motion of
the phase along the surface. In the paper [5] the relations for waves generated by
external wave of surface current in the form of a plane are obtained. They imply
that the slow wave current creates a surface electromagnetic wave and the fast
wave of current — antisurface leaky one, i.e. only quick wave of current radiates.
These ratios significantly differ from the above considered: the current is as-
sumed to be specified (incident) and dissipation are not considered. In our case,
the problem is self-consistent and with dissipation.

In a thin dielectric film with thickness t and the dielectric constant (DC) ¢
you can enter the current density of the polarization J, =i®z(s(@)-1E and the

corresponded surface current density Js =J,t. This suggests that the film has
electric conductivity o° =ime.t(e(@)-1). The result does not depend on the nature

of the film. In the case of metal it may be the DC of metal in the form of Drude-
Lorentz £(@)=¢,—@?/(&® ~iow,). The value £ —1 describes the polarization of

the crystal lattice and interband transitions. Similarly, a thin magnetic (e. g.
ferrite) films can be described by the magnetic conductivity 6" =iwut )~ ')

and by surface current of magnetic polarization (magnetization) Js =¢"Hs. For

E-wave, we can neglect the transverse component and to calculate the field out-
side the film based on these formulas and surface current Js =Xdtlo, &P (-ik,x)

(consider the motion along the x-axis). Then the wave is surface, if K, >K, (slow
current wave), and it is leaky antisurface [17], if kK« <Ko, i.e., during the fast

wave of current. These results, however, when dissipation is not quite accurate:
you must enter the radiation dissipation ki >0 in accordance with what the ob-

jective should be self-consistent. Dissipation shifts the frequency of the transi-
tion from slow wave to the fast, which demonstrates the importance of dissipa-
tion for the classification of waves.
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Fig. 3. Dependence of reflection coefficients P (solid curves) and
transmission T (dashed curves) of the angle of incidence ¢ for the
structure of the HMM with d = 420 nm, t,, =ty = 20 nm, &= 3 for
different values of a: o. = 0 (curve 1), o = /12 (2), a = 7/8 (3),
a=m/4 (4), o =73 (5).

Puc. 3. 3aBucumMocTs k03 dunneHToB oTpaxenus P (cruronnsie
KpHBbI€) U NportyckaHus T (IITpUXOBBIE KPUBBIE) OT yIja MajeHUs
¢ st cTpykTypsl MM ¢ d=420 um, t,=t;=20 uM, g =3 s
pasnu4HbIX 3HaYeHui o: o = 0 (kpuBas 1), o = 1/12 (2), 0=n/8 (3),
a=n/4 (4), o=m/3 (5)
For diffraction we choose the y axis perpendicular to the plane of inci-
dence. In the incidence of the p-polarized wave (E-wave), it has a projection E, ,

and in the fall of the s-polarized wave it is E,, . In the first case we put E, =1,
and then the reflection coefficient is equal to diffraction amplitude R, =E, or

has the form R, =T, ~1=-1+a,/det(A), R =T, ~1=—1+a,/det(A)

6. Conclusions

We have discussed the symmetric and antisymmetric plasmon-polaritons
in symmetric metal-dielectric and graphebne structures. In contrast to the cus-
tomary classification in this work it is carried out by the parity-odd longitudinal
component (E, for E-SP and H, for H-SP). Accordingly, the even (Symmetric)

E-SP corresponds to the magnetic wall, and the odd one — to electric one. It is
shown that the inductive input impedance at the border of the vacuum structure
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leads to the forward SP, and a capacitive — to the backward SP. That allow one
to synthesize the surface metalenses. Dissipation leads to the possibility of
propagation of plasmon-polaritons in bandgap zones, and in this case the anom-
alous negative dispersion does not mean a backward plasmon [6, 7], Fig. 1. The
SPs are very slow if the surface input impedance is highly reactive, what for E-
SP (3) means: 1-p}7 + pi? >>2p0|onl, P <<|phl, |oh|>>1. The impedance
approach allows us to obtain DE for both singlet graphene [18] and layered gra-
phene-dielectric structures.

Also we have considered the diffraction of a plane wave on the described
by surface conductive films and plane-structures containing such films. The
DEs and formulas for the parameters of the scattering have been received. In the
general case of anisotropic conductivity the modes are hybrid.
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