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Abstract. A drawback in the synthesis of copper dioxide nanoparticles is that because it operates at a control 

nanoscale morphology and size is difficult to handle, as for example a small increase or decrease in temperature or 

concentration; It generates big changes. Therefore, a mathematical model from the reaction kinetics taking place in the 

synthesis is proposed. This mathematical model is from type reaction-diffusion. The control parameters give an idea of 

model parameters to be varied to obtain a morphology and specific particle size. These control parameters are given by 

the pH and the initial concentration of the reactants employed in the synthesis copper dioxide nanoparticles. The analysis 

of linear stability of reaction-diffusion model is realized and fullfil the diffusion-driven instability.  
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Introduction. 

Metal nanoparticles are of great interest because they have optical, electronic, catalytic, magnetic or antimicrobial 

properties that differ significantly from the properties of metals on a larger scale [1]. Nanomaterials can be obtained with 

different particle size and morphology (spheres, tubes, wires, etc.), which is unknown as it relates to chemical synthesis 

parameters. Among the metals most used for synthesis of metallic nanoparticles are Gold, Silver and Copper, the latter 

being the least explored in this area, but with characteristics and properties even superior to the metals already mentioned; 

Such as its electrical conductivity, low price, stability at high frequencies and mainly that Mexico is the 4th place in the 

world to obtain this metal [2]. 

  Advances in recent decades in nonlinear science, which has recently emerged as a metacensity that ranges from 

physics to mathematics; Through biology, chemistry, and an extensive field etc., have revealed that most obey the same 

laws [3]. 

  Thus, deterministic systems have become a potentially useful tool for the study of space-time structures, which are 

generally focused from a mathematical point by non-linear equations in partial derivatives, such as the Navier-Stokes 

equations for fluid or diffusion-reaction systems to describe a large number of both chemical and biological systems [4]. 

  For this reason, the aim of this work is to obtain the size and morphology of nanoparticles of copper oxide by 

means of computer simulation, in order to obtain the main parameters that must be varied to define specific sizes and 

morphologies. Later they will be compared with those obtained experimentally in other works; Proposing with this a 

simple and quick way of synthesizing them, which will save time, money and effort. 

Mathematical Model. 

Out-of-equilibrium systems are described in a mathematical way by non-linear differential equations, which gives 

us the space-time evolution of the dynamic variables. For most of the studied chemical systems it is assumed that the only 

spatial coupling is due to linear diffusion, so that it is governed by reaction-diffusion equations [5]. Therefore, the 

following reaction mechanism is proposed, which is obtained from the synthesis of copper nanoparticles [6]: 

Cu(CH3COO)2                           Cu+2 + 2CH3COO-1 

NaOH                                          Na+1 + OH-1 

Cu+2 + 2OH-1                               Cu(OH)2 

Cu(OH)2 + C6H8O6                     Cu+2 + 2H2O + C6H6O6
-2 

2Cu+2  + C6H6O6
-2 + H2O        Cu2O + C6H6O6 + 2H+1. 

From this mechanism, the following variables and constants belonging to the synthesis are proposed: 

x= Cu+2                                                               y= C6H6O6
-2                     

a=Cu(CH3COO)2                    b=NaOH                c=C6H8O6 

By replacing these variables and constants in the proposed reaction mechanism, we obtain that: 

a                              x + 2CH3COO-1 

b                             Na+1 + OH-1 

x + 2OH-1                Cu(OH)2 

Cu(OH)2 + c            x + 2H2O + y 

2x+y+H2O              Cu2O+C6H6O6 +2H+1 

And of this reduced reaction mechanism, it is easy to obtain the reaction rates as: 

V1 = k1 [a] 

V2 = k2 [b] 

V3 = k3 [x][OH-1]2 

V4=k4c[Cu(OH)2] = k4k3xc[OH-1]2 

V5 = k5 [x]2 [y][H2O] 

And by applying to the reduced reaction mechanism the mass action law and substituting the reaction rates obtained 

above, the following diffusion reaction system is obtained: 
𝑑[𝑥]

𝑑𝑡
= 𝑘1[𝑎] − 𝑘3[𝑥][𝑂𝐻−1]2 + 𝑘3𝑘4[𝑥][𝑂𝐻−1]2 − 𝑘5[𝑥]2[𝑦][𝐻2𝑂], 
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(1) 
𝑑[𝑦]

𝑑𝑡
= 𝑘3𝑘4[𝑐][𝑥][𝑂𝐻−1]2 − 𝑘5[𝑥]2[𝑦][𝐻2𝑂]. 

In order to standardize variables, the following changes of variables are proposed: 

X= x]     ;     Y=y]     ;     T=τt     ;    A= δ[a]     ;     B= є[b]     ;    C= σ[c]. 
Using these variables are replaced in the respective nonlinear ordinary differential equations, by convenience 

dividing the equations between [OH-1] and realizing an algebraic procedure in the new equations we can clear the 

adimencional variables in terms of the constants of speed of which they are It follows that: 

𝑘1= δ; σ= 
𝑘3𝑘4

√𝑘5
3  ; = √𝑘5

3 = 𝛼  ; τ =[OH-1] [OH-1] = 
𝑓

ℎ
donde 10-14 =f  y [H+1]= h. 

Finally, substituting these definitions into equations (1) and imposing the continuity equation on these resulting 

kinetic equations, we obtain that: 
𝜕𝑋

𝜕𝑇
=

ℎ

𝑓
𝐴 −

𝑓

ℎ
(1 − 𝐶)𝑋 − ℎ𝑋2𝑌 + 𝐷𝑋𝛻2𝑋, 

(2) 

𝜕𝑌

𝜕𝑇
=

𝑓

ℎ
𝐶𝑋 − ℎ𝑋2𝑌 + 𝐷𝑌𝛻

2𝑌. 

Results. 

To obtain the computational simulation, we obtain the global reaction mechanism and the rate constants of the 

synthesis of copper oxide nanoparticles. Subsequently, variables were assigned to the chemical species, which are 

indispensable for the formation of nanostructures. The next step is to analyze the space-time evolution of the mathematical 

model, which will be solved in three dimensions by means of computational software, thus obtaining the type of instability 

of our systems; Which is directly related to the formation of the morphology of nanoparticles. 

A) Lineal stability analysis: To obtain these results, we follow the analysis method proposed in the references  

[7-9]: 

1 Obtaining fixed points: By definition of equilibrium points or fixed points(𝐴0, 𝐶0) [7], the which fullfil, the 

following conditions of the equations (2): 𝛻2𝑋 = 0, 𝛻2𝑌 = 0,
𝜕𝑋

𝜕𝑇
= 0and 

𝜕𝑌

𝜕𝑇
= 0 Substituting the last equations in (2), we 

get:  

 𝑅(𝑋0, 𝑌0) =
ℎ

𝑓
𝐴 −

𝑓

ℎ
(1 − 𝐶)𝑋0 − ℎ𝑋0

2𝑌0 = 0,                                                             (3) 

𝑀(𝑋0, 𝑦0) =
𝑓

ℎ
𝐶𝑋0 − ℎ𝑋0

2𝑌0 = 0, 

which can be solved to obtain: 𝑋0 =
ℎ2

𝑓2 𝐴, 𝑌0 =
𝑓3𝐶

ℎ4𝐴
.The graphs of this fixed point shows a subcritical bifurcation, takes A 

as the variable in the first equation and C in the second equation. 

2. Obtaining the Jacobian: Following with the linear stabillity analysis, is proposed a solution in form of a small 

disturbance arround fixed points (𝐴0, 𝐶0) such that: 𝛷 = 𝐴0 + 𝛷0𝑒𝑥𝑝(𝛬𝑡 − 𝑖�⃗� ⋅ 𝑟 ), 𝛹 = 𝐶0 + 𝛹0𝑒𝑥𝑝(𝛬𝑡 − 𝑖�⃗� ⋅ 𝑟 ). 
Substituting this solution in the equations (2), disregarding terms of order greater than the quadratic and after of 

simplifying algebraic terms, is obtained that:  

(
𝛬 0
0 𝛬

) (
𝛷
𝛹

) = 𝐽(𝑋0, 𝑌0) (
𝛷
𝛹

) − 𝑘2 (
𝐷𝑋 0
0 𝐷𝑌

) (
𝛷
𝛹

)                                               (4) 

where  𝐽(𝑋0, 𝑌0) = (
𝑅𝑥 𝑅𝑦

𝑀𝑥 𝑀𝑦
) = (

𝑓

ℎ
(𝐶 − 1) − 2ℎ𝑋0𝑌0 −ℎ𝑋0

2

𝑓

ℎ
𝐶 − 2ℎ𝑋0𝑌0 −ℎ𝑋0

2
)(

𝛷
𝛹

) where R, M fulfill the equation (3) and 

𝑅𝑥, 𝑀𝑦are their partial derivatives, respectively.  

3. Obtaining the trace and the determinant of the Jacobian: Tr[𝐽(𝑋0, 𝑌0)], ∥ 𝐽(𝑋0, 𝑌0) ∥ are the trace and the deterinant 

of jacobian𝐽(𝑋0, 𝑌0)respectively, which are obtained substituting the fixed points, the approximation 
𝑓

ℎ
≈ 1 and the 

method for found𝑘2which has been follow this procedure described in [10]. And hence here:  

Tr[𝐽(𝐴, 𝐶)] =
𝜎−1

2
(ℎ𝐴2 −

1+𝐶

𝜎
) ,                                                             (5) 

 ∥ 𝐽(𝐴, 𝐶) ∥= (𝑓𝐴2 −
(1+𝐶+𝜎ℎ𝐴2)

2

4𝜎
) 

where 𝜎 = 𝐷𝑋 𝐷𝑌⁄ . 

4. Obtaining eigenvalues: substituing 𝐽(𝑋0, 𝑌0) in the equation (4) and solving, the determinant and its eigenvlues 

𝛬(𝜑0,ψ0,k
2) are obtained, which take the form: 
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𝛬(𝑋0, 𝑌0,k
2) = 𝑇𝑟(𝑋0, 𝑌0,k

2) ± √[𝑇𝑟(𝑋0, 𝑌0,k
2)]2−∥ 𝐽(𝑋0, 𝑌0,k

2) ∥,                      (6) 

where Tr[𝐽(𝑋0, 𝑌0,k
2)] = Tr[𝐽(𝑋0, 𝑌0)] − (𝐷𝑋 + 𝐷𝑌)𝑘

2, ∥ 𝐽(𝑋0, 𝑌0,k
2) ∥=∥ 𝐽(𝑋0, 𝑌0) ∥ +(𝑀𝑌𝐷𝑋 + 𝑅𝑋𝐷𝑌)𝑘

2 +
𝐷𝑋𝐷𝑌𝑘

4, with Tr[𝐽(𝑋0, 𝑌0)] and ∥ 𝐽(𝑋0, 𝑌0) ∥ fulfill the quations (5), when the fixed points are replaced with the 

approximation 
𝑓

ℎ
≈ 1and later of found 𝑘2in terms of the constants A, C. The results of eigenvalues evaluation given for 

the equation (6) are showed in the Fig. 1 a).  

 

B) Numerical Solution: In this section with the aim of consider the spatial behavior in the nonlinear partial 

differential equations, is need to solve the equations (2) numerically. This system of equations are solved using the 

discretization of the laplacian method, which has been follow this procedure for the temporal integration described in 

[10]. 

 A seed cube of 128 side nodes is taken as the initial condition, when 𝐴 = 0.00023, 𝐶 = 0.00072, 𝑝𝐻 = 9, 
𝜎 = 0.01 at room temperature becomes a sphere, which is in agreement with Yakui et al. [6], where it is observed that 

from a cubic morphology, it is nucleating until obtaining a completely spherical morphology, as can be seen In Fig. 1 (b). 

These control parameters are obtained from the experimental values of the chemical synthesis of copper nanoparticles 

[6]. 

  Therefore, maintaining a constant pH, it is necessary that the model reproduces at least three types of morphologies: 

cubes, pseudocubes and spheres. The transitions between these morphologies are determined by diffusion, since if the 

diffusion is minimal 𝜎 < 0.01, then depending on the shape of the seed, this will influence the morphology at the moment 

of the nucleation mechanism. In this state the dynamics behave as diffusion-driven or Turing-type instability [11]. 

 

 

 

 

 

 

 

 

                                                            

 

Figure 1 – Left imagen: phase space of Turing, central imagen: spatio-temporal evolution of equations (4), and right 

imagen: SEM of synthesis chemical of cupper nanoparticles of 50 mn of large approximately 

Conclusion. 

We find that indeed our proposed mathematical model reproduces the morphologies obtained in an experimental 

way by simulating computational simulation. The morphology depends on the shape of the seed (initial conditions) that 

serves to initiate the nucleation process, whereas the growth is given by the kinetics of the reaction, as well as the diffusion 

process. This has profound implications for generating nanostructured materials, which can be used as bactericides. 
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