СТРУКТУРНО-ФУНКЦИОНАЛЬНЫЕ СВОЙСТВА ИНУЛИНАЗ В УСЛОВИЯХ РАЗЛИЧНОГО МИКРООКРУЖЕНИЯ

Холявка М.Г., Артюхов В.Г.

Воронежский государственный университет Университетская пл., 1, г. Воронеж, 394018, РФ; e-mail: holyavka@rambler.ru Поступила в редакцию: 08.05.2018

Аннотация. Изучена роль следующих процессов в проявлении функциональной активности инулиназы: а) формирование димеров с измененной пространственной структурой (при 45 и 55 °C / значениях pH 4,5, 5,0-6,5 / УФ-облучении в дозах до 453 Дж/м² для дрожжевой и растительной инулиназы и до 4530 Дж/м² для грибного энзима), б) образование тетрамеров и более крупных ассоциатов (при 61 °C и выше / pH 3,5 и 13,0 / УФ-облучении молекул дрожжевой и растительной инулиназы дозой 755 Дж/м²), в) диссоциация молекулы фермента на субъединицы (при 60 °C / pH 3,0). Предложены схемы отдельных этапов ответной реакции инулиназ различного происхождения на воздействие высоких температур (до 70 °C), высоких и низких значений pH среды (от 3,0 до 13,0), УФ-излучения (240-390 нм) в дозах 151-6040 Дж/м².

Ключевые слова: инулиназа, мономер, димер, тетрамер, ассоциация, диссоциация.

Карбогидразы (или гликозидазы, КФ 3.2.1) катализируют гидролиз гликозидных связей в молекулах углеводов. Эти ферменты встречаются в клетках почти всех живых организмов. Гликозидазы выполняют множество разнообразных функций: деградация биомассы (целлюлазы), участие в антибактериальной защите организма (лизоцим), развитие патогенеза (вирусные нейраминидазы), клеточный биосинтез (маннозидазы, вовлечённые в созревание N-гликозилированных гликопротеинов). Гликозидазы вместе с гликозилтрансферазами образуют основу биологического аппарата синтеза и разрушения гликозидных связей.

Изучение структурно-функциональных, физико-химических и кинетических свойств инулиназ (КФ 3.2.1.7) имеет высокое теоретическое и прикладное значение. Эти ферменты участвуют в углеводном метаболизме высших растений и микроорганизмов, являются важнейшими компонентами сигнальных путей, играют одну из ключевых ролей в контролировании процессов клеточной дифференцировки и развития органов. Инулиназы могут быть использованы в циклах производства сахаров с различной степенью полимеризации, в частности, фруктозы и фруктоолигосахаридов – неотъемлемых компонентов функционального питания, снижающих риск возникновения сахарного диабета, кариеса и ожирения [1].

Многие гликозидазы способны образовывать надмолекулярные комплексы при изменении их микроокружения, причем у некоторых из карбогидраз процессы ассоциации-диссоциации являются одним из механизмов регулирования их каталитической активности [2, 3].

Целью данной работы является изучение структурно-функциональных, физико-химических и кинетических свойств инулиназ из различных продуцентов, закономерностей формирования ферментом надмолекулярных комплексов в условиях различного микроокружения.

Объектами исследования были инулиназы, выделенные из культуры дрожжей *Kluyveromyces marxianus* и клубней топинамбура *Helianthus tuberosus* на кафедре биофизики и биотехнологии Воронежского государственного университета, а также коммерческий препарат инулиназы из *Aspergillus niger* фирмы «Sigma Aldrich» (Германия).

Каталитическую активность инулиназы измеряли спектрофотометрически резорциновым методом. В качестве субстрата использовали инулин фирмы MP biomedicals. Содержание белка в пробах определяли методом Лоури.

Размеры инулиназы и ее субъединиц в экспериментах по исследованию закономерностей образования надмолекулярных комплексов и влиянию УФ-облучения на указанные объекты определяли методом динамического светорассеяния на приборе Photocor complex (ООО «Фотокор», Россия) ($\lambda = 647$ нм, He/Ne-лазер). Форма белковой глобулы принималась за идеальную сферическую. Полученные данные обрабатывали в программе DynaLS. В других экспериментах был использован прибор Nano Zetasizer ZS (Malvern Instruments). Обратный рассеянный свет от He/Ne-лазера мощностью 4 мВт (632,8 нм) собирали под углом 173 ° при температуре 25 °C. Концентрация белка составляла 1,0-1,5 мг/мл в 0,1 М ацетатном буфере с pH 4,7. Образец предварительно пропускали через фильтр Millipore с диаметром пор 0,45 мкм.

Каталитическая активность		Процесс		
ижение ивности →	7 % 13 % 27 % 53 %	Процессы ассоциации-диссоциации молекул фермента не зарегистрированы при концентрациях инулиназы 1, 5 и 10 мг/мл ↑		
Снакт	более 70 %	Модификация третичной структуры белка, тенденция к снижению величины радиуса молекулы при концентрации инулиназы 1 мг/мл		
Оптимум	100 %	↑ Преобладание димерной формы фермента ↓		
	более 85 %	Модификация третичной структуры белка, тенденция к снижению величины радиуса молекулы при концентрациях инулиназы 5 и 10 мг/мл ↓		
Нижение стивности ←	~ 50 %	Образование тетрамерных и октамерных форм фермента как предшественников процессов интенсивной агрегации молекул при концентрациях инулиназы 5 и 10 мг/мл ↓		
ak ak	~ 30 %	Практически полная агрегация частиц: при концентрации инулиназы 10 мг/мл при концентрации инулиназы 5 мг/мл при концентрации инулиназы 1 мг/мл		
	Снижение активности Оптимум активности ← →	13 % 13 % 27 % 53 % 00 0000000000000000000000000000000000		

Рисунок 1. Схема отдельных этапов ответной реакции инулиназы из *Kluyveromyces marxianus* на температурные воздействия

На рисунках 1 и 2 отражены предлагаемые нами схемы отдельных этапов ответной реакции инулиназ из *Kluyveromyces marxianus* и *Helianthus tuberosus* на воздействие различных температур. При оптимальном для осуществления реакции гидролиза инулина значении температуры (50 и 48 °C соответственно) молекулы энзима находятся преимущественно в димерной форме (каталитическая активность фермента принята за 100 %). При повышении или понижении значений температуры относительно оптимума функционирования происходит частичная или полная потеря каталитической способности инулиназ. При этом в диапазоне от 25 до 40 °C процессы ассоциации-диссоциации молекул не зарегистрированы для обеих инулиназ. Интенсивная агрегация частиц при концентрациях энзима в растворе 1, 5 и 10 мг/мл наблюдалась соответственно при 60, 58 и 50 °C для растительной инулиназы и при 70, 64 и 62 °C – для дрожжевой.

На рисунке 3 представлена схема отдельных этапов ответной реакции инулиназы из *Kluyveromyces marxianus* на воздействие различных значений pH среды. При оптимальном для осуществления реакции гидролиза инулина значении pH 4,7 молекулы энзима находятся преимущественно в димерной форме. При повышении или понижении pH относительно значения 4,7 происходит частичная или полная (pH 3,0 и pH 6,5 и выше) потеря функциональной способности инулиназы. При pH среды в диапазоне 5,0-6,5 единиц происходит модификация третичной структуры белка, которая при pH 13,0 приводит к обратимому формированию неактивных тетрамеров молекул фермента. При pH 4,5 мы регистрировали появление димеров с измененной пространственной структурой, сохраняющих более 80 % каталитической способности. При pH 3,5 – детектировали образование октамерных форм (до 11,5 % от общего числа частиц в системе) и более крупных ассоциатов, количество которых возрастало с увеличением времени инкубации. При значении pH 3,0 происходила практически полная (но обратимая) диссоциация молекулы инулиназы на субъединицы, которые не проявляли функциональной активности.

t, °C	Каталитическая активность		Процесс	
25 30 35 40 45	Снижение активности →	36 % 54 % 75 % 92 % 96 %	Процессы ассоциации-диссоциации молекул фермента не зарегистрированы при концентрациях инулиназы 1, 5 и 10 мг/мл	
48	Оптимум	100 %	↑ Преобладание димерной формы фермента ↓	
50 58 60	Снижение активности ←	92 % 48 % 43 %	Интенсивная агрегация частиц: при концентрации инулиназы 10 мг/мл при концентрации инулиназы 5 мг/мл при концентрации инулиназы 1 мг/мл	

Рисунок 2. Схема отдельных этапов ответной реакции инулиназы I из *Helianthus tuberosus* на температурные воздействия

рН	Каталитическая активность		Процесс
13,0	Снижение активности →	0	Образование тетрамеров, которые после 30 мин инкубации постепенно диссоциируют ↑
6,5 6,0 5,0		0 ~ 7 % ~ 87 %	Модификация третичной структуры белка
4,7	мумитиО	100 %	↑ Преобладание димерной формы фермента ↓
4,5	е	более 80 %	Появление димеров с измененной пространственной структурой ↓
3,5	Снижение активност	20 %	Образование октамерных форм (до 11,5 %) и более крупных ассоциатов, количество которых возрастает с увеличением времени инкубации ↓
3,0		0	Практически полная диссоциация молекулы инулиназы на субъединицы, после трех часов инкубации вновь образуются димеры

Рисунок 3. Схема отдельных этапов ответной реакции инулиназы из *Kluyveromyces marxianus* на воздействие высоких и низких значений pH среды

На рисунках 4 и 5 приведены схемы процессов ассоциации-диссоциации молекул инулиназ при различных условиях их термической и УФ-инактивации.

Из изложенного выше материала можно сделать следующие выводы:

1. При оптимальном для осуществления реакции гидролиза инулина значении температуры (50 и 48 °C соответственно) молекулы энзима из *Kluyveromyces marxianus* и *Helianthus tuberosus* находятся преимущественно в димерной форме. В диапазоне от 25 до 40 °C процессы ассоциации-диссоциации молекул белка практически не зарегистрированы. Интенсивная агрегация макромолекул при концентрациях энзима в растворе 1, 5 и 10 мг/мл наблюдалась соответственно при 60, 58 и 50 °C для растительной инулиназы и при 70, 64 и 62 °C – для дрожжевой.

2. При оптимальном для осуществления реакции гидролиза инулина значении pH 4,7 молекулы энзима из *Kluyveromyces marxianus* находятся преимущественно в димерной форме. При pH 3,5 детектируется образование октамерных форм (до 11,5 % от общего числа частиц в системе) и более крупных ассоциатов.

3. При УФ-облучении в дозах 755 Дж/м² и выше происходит фотомодификация ароматических и серосодержащих аминокислотных остатков белка, приводящая к ассоциации молекул дрожжевой и растительной инулиназы. Следствием воздействия доз УФ-излучения в диапазоне 4530-6040 Дж/м² является снижение каталитической активности инулиназ.

	Условия протекания		
Процесс	t, °C	Время инкубации	Концентрация инулиназы, мг/мл
Преобладание димерных форм фермента ↓	от 50 до 57	до 4 часов	1, 5, 10
Протекание процессов диссоциации ↓	60	1,5 часа	1
Поприние тетрамерии и форм фермента	60	2 часа	1
появление тетрамерных форм фермента	61	5 мин	5, 10
↓	63	20 мин	1
	60	3,5 часа	5
Практически полная агрегация частиц	62	5 мин	10
	63	1 час 40 мин	1
	64	5 мин	5
	70	5 мин	1

Рисунок 4. Схема процессов ассоциации-диссоциации молекул инулиназ из *Kluyveromyces marxianus* при различных условиях ее термической инактивации

ОБЩАЯ БИОФИЗИКА

Инулиназы из		Инулиназа из Aspergillus
Kluyveromyces marxianus и	УФ-облучение (240-390 нм)	niger
Helianthus tuberosus	\downarrow	
151-453 Дж/м ²	Хромофоры нативных димеров фермента	151-4530 Дж/м ²
	\downarrow	
	Возбужденные состояния	
	\downarrow	
	Миграция возбужденных состояний внутри молекулы	
	белка	
	\downarrow	
	Фотомодификация третичной структуры белка. Появление	
	димеров с измененной пространственной структурой	
	\downarrow	
755 Дж/м ²	Образование тетрамеров	не происходит
	\downarrow	
4530 Дж/м ²	Снижение функциональной активности	6040 Дж/м ²

Рисунок 5. Схема отдельных этапов ответной реакции инулиназ различного происхождения на воздействие УФ-облучения: роль процессов миграции возбужденных состояний, фотомодификации третичной структуры белка, образования димеров и тетрамеров в фотоинактивации фермента

Список литературы / References:

1. Artyukhov V.G., Kovaleva T.A., Kholyavka M.G., Bityutskaya L.A., Grechkina M.V., Obraztsova T.B. Study of the oligomeric structure and some physicochemical properties of inulinase from *Kluyveromyces marxianus* Y-303. *Biophysics*, 2009, vol. 54, no. 6, pp. 675-680.

2. Ковалева Т.А., Холявка М.Г. Исследование структурных особенностей инулиназ из различных продуцентов методом ИК-спектрофотометрии. Вопросы биологической, медицинской и фармацевтической химии, 2011, т. 9, № 1, с. 3-7. [Kovaleva T.A., Kholyavka M.G. Investigation of structural features of inulinases from different producers by IR spectrophotometry. Voprosy biologicheskoj, medicinskoj i farmacevticheskoj himii, 2011, vol. 9, no. 1, pp. 3-7. [In Russ.]]

3. Artyukhov V.G., Holyavka M.G., Kovaleva T.A. Structural and functional properties of inulinases. Ways to regulate their activity. *Biophysics*, 2013, vol. 58, no. 4, pp. 493-501.

STRUCTURAL AND FUNCTIONAL PROPERTIES OF INULINASES UNDER CONDITIONS OF DIFFERENT MICROENVIRONMENT

Holyavka M.G., Artyukhov V.G.

Voronezh State University

Universitetskaya sq., 1, Voronezh, 394018, Russia; e-mail: holyavka@rambler.ru

Abstract. The role of the following processes in the manifestation of the functional activity of inulinase was studied: a) the formation of dimers with a changed spatial structure (at 45 and 55 °C / pH 4,5, 5,0-6,5 / UV irradiation at doses up to 453 J/m² for yeast and plant inulinase and up to 4530 J/m² for the fungal enzyme), b) the formation of tetramers and larger associates (at 61 °C and higher / pH 3,5 and 13,0 / UV irradiation of yeast and plant inulinase molecules by a dose 755 J/m²), c) the dissociation of the enzyme molecule into subunits (at 60 °C / pH 3,0). The schemes of the response stages for various inulinases to high temperatures (up to 70° C), high and low pH values (from 3,0 to 13,0), UV radiation (240-390 nm) at doses of 151- 6040 J/m².

Key words: inulinase, monomer, dimer, tetramer, association, dissociation.