МОЛЕКУЛЯРНОЕ МОДЕЛИРОВАНИЕ ВИЛОНА Ахвердиева Г.А., Демухамедова С.Д., Годжаев Н.М.

Институт Физических Проблем, Бакинский Государственный Университет, ул. 3. Халилова, 23, г. Баку, AZ1148, Aзербайджан; e-mail: hagverdigulnara@gmail.com Поступила в редакцию: 23.06.2020

Аннотация. В работе методами молекулярного моделирования исследован тимомиметик вилон (Lys-Glu). Конформационные профили дипептида изучены в рамках молекулярной механики, электронные характеристики проанализированы с помощью квантово-химических расчетов, проведен молекулярный докинг исследуемого лиганда с Т-клеточным рецептором. Рассчитаны энергетические и геометрические параметры, эффективные заряды атомов, коэффициенты заселенности атомных орбиталей, дипольный момент, энергии высшей занятой молекулярной орбитали и низшей свободной молекулярной орбитали, ширина энергетической щели, контуры и карты электростатического потенциала устойчивых состояний исследованной молекулы. Установлено, что в свернутой конформации боковые цепи остатков лизина и глутаминовой кислоты взаимодействуют более эффективно, чем в развернутой, что приводит к формированию солевого мостика между атомом N аминогруппы боковой цепи Lys и атомами О карбоксильной группы боковой цепи Glu. Показано, что данная структура более устойчива по электронным параметрам, а также хорошо дополняет расшелину на поверхности специфического рецептора, образуя стабильный комплекс, характеризующийся высоким значением энергии связывания. Полученные данные позволили нам оценить свернутую структуру как биологически активную конформацию вилона. Результаты проведенного исследования обеспечивают улучшенное описание структурнофункциональных отношений тимомиметиков.

Ключевые слова: молекулярная механика, квантовая химия, молекулярный докинг, вилон, биоактивная конформация.

Тимомиметик вилон (Lys-Glu), являющийся структурным элементом многих гормонов тимуса, был сконструирован на основе статистического анализа аминокислотного состава препарата Тималин. Полученные данные указывают на безопасность и эффективность применения данного пептида для коррекции возрастных нарушений ангиогенеза и иммуногенеза, а также для регулирования пролиферации клеток и ингибирования канцерогенеза [1,2].

Чтобы понять механизм действия исследуемого препарата, необходимо изучить его структурные и электронные особенности, важные для взаимодействия со специфическим рецептором. В настоящей работе приведены результаты молекулярного моделирования вилона [3]. Расчетная модель молекулы показана на рисунке 1. Конформационные профили указанного дипептида были изучены методом молекулярной механики. Расчеты конформационной энергии были выполнены с использованием полуэмпирической программы [4,5], разработанной на основе принципа матричного метода Германса и Ферро. Квантово-химические расчеты молекулы были проведены методом СNDO, параметризованным для расчета электронных структур биополимеров с использованием демонстрационной версии программного пакета HyperChem [6]. Молекулярный докинг исследуемого лиганда и его рецептора осуществлялась программным обеспечением AutoDock Vina [7]. 3D-структура Т-клеточного рецептора была получена из банка данных белка по адресу http://www.rcsb.org (pdb для 4MNH). Кристаллографические молекулы воды были удалены из исходного файла .pdb с помощью AutoDock Tools v.1.5.6. Координаты вилона были взяты из результатов конформационных расчетов, проведенных нами. Для визуализации и анализа 3D-взаимодействий лиганд-рецептор был использован РуМоI [8].

Массивность боковых цепей аминокислотных остатков, составляющих исследуемую молекулу, а также наличие четырех заряженных групп (N- и C-концевые противоположно заряженные группы атомов и цельный заряд на боковых цепях лизина и глутаминовой кислоты) являются важными факторами, определяющими стабилизирующие силы: дисперсионные взаимодействия боковых цепей аминокислотных остатков и электростатические взаимодействия между заряженными группами. Поэтому энергия данного дипептида очень чувствительна к положениям боковых цепей аминокислотных остатков. Расчет конформационных профилей показал, что эта молекула имеет такую структурную организацию, которая не исключает реализацию свернутого и развернутого типа конформаций. Наблюдаемое различие в энергии рассчитанных конформаций определяется в основном электростатическими взаимодействиями и дисперсионными контактами. Оптимальная свернутая конформация (Е_{отн.} = 0,0 ккал / моль) и оптимальная развернутая конформация (Е_{отн.} = 0,6 ккал / моль) и исследуемой молекулы дипептида проиллюстрированы на рисунке 2. Геометрические параметры этих структур приведены в таблице 1. Отметим, что в свернутой конформации этого дипептида боковые цепи остатков лизина

Рисунок 1. Модель молекулы вилона с обозначением (а) и нумерацией (b) атомов

и глутаминовой кислоты копланарны и, таким образом, взаимодействуют более эффективно. Такое пространственное расположение боковых цепей делает молекулу компактной, а также обеспечивает близость между атомами боковых цепей и атомами амино- и карбоксильных групп на концах молекулы. Так, в свернутой конформации расстояния от атома водорода N-концевой аминогруппы до атомов кислорода карбоксильной группы боковой цепи Glu и до атомов кислорода С-концевой карбоксильной группы составляют 7,0 Å и 4,7 Å соответственно; расстояния от атома азота аминогруппы боковой цепи Lys до атомов кислорода карбоксильной группы боковой цепи Glu и атомов кислорода С-концевой карбоксильной группы составляют 3,0 Å и 7,8 Å, соответственно. Установлено, что в развернутой конформации расстояния от атома водорода N-концевой аминогруппы до атомов кислорода карбоксильной группы боковой цепи Glu и до атомов кислорода С-концевой карбоксильной группы составляют 7,1 Å и 6,0 Å, соответственно; расстояния от атома азота аминогруппы боковой цепи Lys до атомов кислорода карбоксильной группы боковой цепи Glu и атомов кислорода С-концевой карбоксильной группы составляют 11,7 Å и 5,4 Å, соответственно. Приведенные выше данные показывают, что расстояния от атомов положительно заряженной аминогруппы боковой цепи Lys до атомов отрицательно заряженной карбоксильной группы боковой цепи Glu в свернутой структуре молекулы короче, чем в развернутой, что способствует эффективным электростатическим взаимодействиям и формированию солевого мостика (3,0 Å) между атомом азота аминогруппы боковой цепи Lys и атомами кислорода карбоксильной группы боковой цепи Glu. Установлено, что в свернутой конформации формируются три типа водородной связи: между атомами водорода аминогруппы боковой цепи Lys и атомом кислорода карбоксильной группы боковой цепи Glu (d = 2,22 Å, E = -0,73 ккал / моль), между водородом, связанным пептидной связью с атомом азота главной цепи Glu, и двумя атомами кислорода С-концевой группы (d = 2,38 Å, E = -0,48 кка/ моль). В развернутой конформации формируются две водородные связи только между катионом концевого амина и кислородом, связанным пептидной связью с углеродом главной цепи Lys (d = 2,86 Å, E = -0,12 ккал / моль и d = 2,31 Å, E = -0,57 ккал / моль).

На последующем этапе были исследованы электронно-конформационные свойства вилона. Выявлено влияние конформационных свойств на параметры, характеризующие электронную структуру молекулы. Параметры электронной структуры этого дипептида для свернутой и развернутой конформаций приведены в таблице 2. Выявлено, что общая энергия, энергия связывания изолированных атомов и теплота образования для

Рисунок 2. Свернутая (а) и развернутая (b) конформации вилона

Конформация	Двугранные углы		
конформация	Lys	Glu	
Свернутая	$\varphi = -88, \ \psi = -74, \ \omega = -169, \ \chi_1 = 177, \ \chi_2 = 166, \ \chi_3 = 178, \ \chi_4 = 170, \ \chi_5 = -179$	$\varphi = -132, \ \psi = -21, \ \chi_1 = 59, \ \chi_2 = 180, \ \chi_3 = 92$	
Развернутая	$\varphi = 173, \ \psi = 146, \ \omega = 180, \ \chi_1 = 176$ $\chi_2 = 180, \ \chi_3 = 177, \ \chi_4 = -179, \ \chi_5 = 180$	$\varphi = -130, \ \psi = 57, \ \chi_1 = -60, \ \chi_2 = 180, \ \chi_3 = 90$	

T . 6						
	еометрические на	паметры гв г	палусах і св	епнутой и пяз	вернутой кона	юрмании вилона
таолица т.	comerphi reenne nu	pumerportor	pugyoungob	sophy ton n pus	bepiny ron Rong	Jophiagin Distona

Таблица 2. Электронные параметры свернутой и развернутой конформаций вилона

Электронные параметры	Свернутая конформация	Развернутая конформация
Полная энергия (ккал/моль)	-138706	-138689
Энергия связывания (ккал/моль)	-10148	-10131
Изолированная атомная энергия (ккал/моль)	-128558	-128558
Электронная энергия (ккал/моль)	-681607	-666709
Энергия ядерных взаимодействий (ккал/моль)	542901	528020
Теплота образования (ккал.моль)	-6537	-6520
Дипольный момент (Д)	45	57
Е _{взмо} (эВ)	-5,76	-4,84
E _{HCMO} (3B)	0,02	-0,77
Энергетическая щель (эВ)	5,78	4,07

упомянутых конформаций не различаются, однако их электронная энергия, энергия отталкивания ядер, энергии высшей занятой молекулярной орбитали и низшей свободной молекулярной орбитали, ширина энергетической щели заметно различаются для свернутой и развернутой структур. Как видно из представленных данных, свернутая структура более устойчива по электронным параметрам. Так, сворачивание пептидной цепи данной дипептидной молекулы приводит к увеличению энергетической щели на 1,71 эВ и уменьшению дипольного момента на 12 Д.

Анализ коэффициентов заселенностей атомных орбиталей в двух характерных конформациях вилона (табл. 3 и 4) показал, что при сворачивании пептидной цепи происходит заметное перераспределение электронной плотности. Кроме того, только p_x, p_y, орбитали атома О основной цепи и атома CE боковой цепи Lys и p_x, p_y, p_z орбитали атомов N, CA, O основной цепи и атома OE1 боковой цепи Glu участвуют в процессе переполнения электронной плотности. Как видно из представленных результатов, основное перераспределение электронной плотности происходит за счет изменения заселенностей атомных орбиталей, которые содержат неспаренные электроны, то есть p-орбитали атомов. Отметим, что существенное изменение электронной плотности происходит как при смещении электронного облака к связям, вызывающее изменения зарядов на атомах, так и по направлениям, определяющим заселенности p_x, p_y, p_z -орбиталей.

Номера	Обозначения	Коэффициенты заселенностей атомных орбитале		галей	
атомов	атомов	S	p _x	py	pz
1	N Lys	1,226798	1,253257	1,220961	1,301681
3	CA Lys	1,010717	1,034474	1,017856	0,913736
5	C Lys	1,012792	0,857067	0,922689	0,883487
6	O Lys	1,738454	1,698928	1,474853	1,433339
7	CB Lys	0,986944	0,989725	0,986366	,026105
10	CG Lys	0,978149	0,993916	0,976863	1,024815
13	3CD Lys	0,985486	0,993714	1,050763	0,967403
16	CE Lys	1,015236	0,999238	0,792264	1,114722
19	NZ Lys	1,223227	1,239946	1,341675	1,208404
2	1H Lys	0,768133			
4	HA Lys	0,969928			
8	1HB Lys	1,006491			
9	2HB Lys	0,961153			
11	1HG Lys	0,938562			
12	2HG Lys	0,989956			
14	1HD Lys	0,993983			
15	2HD Lys	0,946626			
17	1HE Lys	0,901776			
18	2HE Lys	0,955655			
20	1HZ Lys	0,783736			
21	2HZ Lys	0,792414			
22	3HZ Lys	0,758270			
23	2H Lys	0,806460			
24	3H Lys	0,790819			
25	N Glu	1,210346	1,412766	1,274448	1,276229
27	CA Glu	1,014585	1,055003	0,990944	0,914551
29	C Glu	1,018420	0,852553	0,802563	0,938365
30	O Glu	1,740179	1,451180	1,625873	1,716813
31	CB Glu	0,977008	0,936557	1,030103	1,011233
34	CG Glu	1,012465	0,956112	1,099605	1,007728
37	CD Glu	1,038308	0,952880	0,828023	0,807425
38	OE1 Glu	1,753936	1,294656	1,818653	1,758778
39	OE2 Glu	1,753843	1,560337	1,628081	1,603968
40	O Glu	1,739918	1,917898	1,599694	1,316048
26	H Glu	0,895764			
28	HA Glu	1,029979			
32	1HB Glu	0,985381			1
33	2HB Glu	1,063298			
35	1HG Glu	1,077414			
36	2HG Glu	0,990080			

Таблица 3. Коэффициенты заселенностей атомных орбиталей в свернутой конформации вилона

таолица 4. Коэффицисты заселенностей атомных оройталей в развернутой конформации вил	Таблица 4. К	оэффициенты засе	ленностей атомных	с орбиталей в	развернутой коно	рормации вилон
--	--------------	------------------	-------------------	---------------	------------------	----------------

Номера	Обозначения	Коэффициенты заселенностей атомных орбиталей			талей
атомов	атомов	S	p _x	py	pz
1	N Lys	1,224914	1,251875	1,204091	1,319649
3	CA Lys	1,010089	0,979802	1,162354	0,823978
5	C Lys	1,012884	0,836945	0,839849	0,967902
6	O Lys	1,737740	1,466651	1,755317	1,406300
7	CB Lys	0,983940	0,989512	0,980405	1,028734
10	CG Lys	0,980975	0,966012	1,035694	1,003390
13	3CD Lys	0,985717	1,046029	0,997757	0,963775
16	CE Lys	1,017391	0,787411	1,028827	1,094545
19	NZ Lys	1,224135	1,344413	1,231604	1,212822
2	1H Lys	0,774732			
4	HA Lys	0,959715			
8	1HB Lys	1,005749			
9	2HB Lys	0,978646			
11	1HG Lys	0,924125			
12	2HG Lys	0,974178			
14	1HD Lys	0,990272			
15	2HD Lys	0,976451			
17	1HE Lys	0,905581			
18	2HE Lys	0,935358			
20	1HZ Lys	0,780786			
21	2HZ Lys	0,785803			
22	3HZ Lys	0,778422			
23	2H Lys	0,778698			
24	3H Lys	0,813908			
25	N Glu	1,204841	1,703517	1,192244	1,052030
27	CA Glu	1,009781	1,143090	0,769437	1,060406
29	C Glu	1,017717	0,894815	0,855564	0,859364
30	O Glu	1,740519	1,879232	1,474697	1,431383
31	CB Glu	0,977074	0,999758	0,980281	1,009670
34	CG Glu	1,015042	1,139499	0,948676	0,971070
37	CD Glu	1,039295	0,843960	0,921256	0,824541
38	OE1 Glu	1,753969	1,863264	1,300278	1,647624
39	OE2 Glu	1,753951	1,595307	1,713307	1,517645
40	O Glu	1,739942	1,343302	1,672370	1,848460
26	H Glu	0,907393			
28	HA Glu	1,009736			
32	1HB Glu	1,011249			
33	2HB Glu	0,984209			
35	1HG Glu	1,039281			
36	2HG Glu	1,074101			

Конформационная перестройка при сворачивании пептидной цепи вызывает перераспределение электронов, что влияет на коэффициенты заселенностей атомных орбиталей и, как следствие, на эффективные заряды атомов. В таблице 5 приведены значения атомных зарядов в свернутой и развернутой конформациях вилона. Как видно из представленных данных, наблюдаются различия для двух типов конформаций в значениях зарядов атомов функциональных групп молекулы: атомов N и H аминогруппы боковой цепи Lys, атомов C и O карбоксильной группы боковой цепи остатка Glu, атомов C и O концевой карбоксильной группы, а также атомов N и H концевой аминогруппы.

Развернутая

	39	OE2 Glu	-0,546228	-0,580210			
	40	O Glu	-0,573558	-0,604074			
На послед	На последующем этапе был проведен молекулярный докинг видона с Т-клеточным рецептором (pdb для						
4MNH). Выявл	тено, что моле	екула вилона будучи в	з развернутой конформ	мации не способна проник	нуть в полость		
связывания субстрата из-за стерических ограничений, лишь слабо связывается на поверхности рецептора, улаленной от его активного центра. Расчет энергии связывания и среднеквадратичных отклонений листанций							
между атомами позволили заключить, что свернутая структура вилона хорошо дополняет расщелину на поверхности рецептора, являющегося центром связывания лиганда (рис. 3). В таблице 6 представлены параметры левяти поз видона в минимизированной структуре комплекса видон-Т-клетонный рецептор 4MNH							
девяти поз вилона в минимизированной структурс комплекса вилон-т-клеточный рецентор читит.							

Таблица 5. Эффективные заряды атомов (в единицах заряда электрона) в свернутой и развернутой конформациях вилона

Свернутая

атомов	атомов	конформация	конформация
1	N Lys	-0,002697	-0,000529
2	1H Lys	0,231867	0,225268
3	CA Lys	0,023218	0,023777
4	HA Lys	0,030072	0,040285
5	C Lys	0,323964	0,342421
6	O Lys	-0,345574	-0,366008
7	CB Lys	0,010859	0,017410
8	1HB Lys	-0,006491	-0,005749
9	2HB Lys	0,038847	0,021354
10	CG Lys	0,026256	0,013928
11	1HG Lys	0,061438	0,075875
12	2HG Lys	0,010044	0,025822
13	3CD Lys	0,002635	0,006722
14	1HD Lys	0,006017	0,009728
15	2HD Lys	0,053374	0,023549
16	CE Lys	0,078540	0,071825
17	1HE Lys	0,098224	0,094419
18	2HE Lys	0,044345	0,064642
19	NZ Lys	-0,013251	-0,012974
20	1HZ Lys	0,216264	0,219214
21	2HZ Lys	0,207586	0,214197
22	3HZ Lys	0,241730	0,221578
23	2H Lys	0,193540	0,221302
24	3H Lys	0,209181	0,186092
25	N Glu	-0,173789	-0,152632
26	H Glu	0,104236	0,092607
27	CA Glu	0,024917	0,017285
28	HA Glu	-0,029979	-0,009736
29	C Glu	0,388100	0,372540
30	O Glu	-0,534045	-0,525830
31	CB Glu	0,045099	0,033217
32	1HB Glu	0,014619	-0,011249
33	2HB Glu	-0,063298	0,015791
34	CG Glu	-0,075910	-0,074287
35	1HG Glu	-0,077414	-0,039281
36	2HG Glu	0,009920	-0,074101
37	CD Glu	0,373363	0,370949
38	OE1 Glu	-0,626022	-0,565135
39	OE2 Glu	-0,546228	-0,580210
40	O Glu	-0,573558	-0,604074

Номера

Обозначения

Позы	Энергия связывания	Среднеква отклонени наименьше	дратичное е от позы с ей энергией
	(ккал/моль)	Rmsd l,b,	Rmsd u,b,
1	-6,1	0,000	0,000
2	-5,9	2,561	5,447
3	-5,8	2,632	4,901
4	-5,7	1,495	1,879
5	-5,6	2,626	5,185
6	-5,6	1,517	2,952
7	-5,5	2,243	4,042
8	-5,4	2,818	5,754
9	-5,3	2,084	3,012

Таблица 6. Сравнение энергии связывания вилона и Т-клеточного рецептора

Рисунок 3. Наилучшая поза вилона в минимизированной структуре комплекса с рецептором

Проведенные расчеты позволили нам оценить свернутую структуру как биологически активную конформацию вилона. Так, установлено, что в свернутой конформации боковые цепи остатков лизина и глутаминовой кислоты взаимодействуют более эффективно, чем в развернутой, что приводит к формированию солевого мостика между атомом N аминогруппы боковой цепи Lys и атомами O карбоксильной группы боковой цепи Glu. Показано, что данная структура более устойчива по электронным параметрам, а также хорошо дополняет расщелину на поверхности специфического рецептора, образуя стабильный комплекс, характеризующийся высоким значением энергии связывания. Результаты проведенного исследования обеспечивают улучшенное описание структурно-функциональных отношений тимомиметиков, понимание механизма их взаимодействия с Т-клеточными рецепторами.

Список литературы / References:

1. Хавинсон В.Х., Анисимов В.Н. Пептидные биорегуляторы и старение. СПб.: Наука, 2003, 223 с. [Khavinson V.Kh., Anisimov V.N. Peptide bioregulators and aging. SPb.: Nauka, 2003, 36 p. (In Russ.)]

2. Khavinson V.Kh., Kuznik B.I., Ryzhak G.A., Peptide Bioregulators: A New Class of Geroprotectors, Report 2. The Results of Clinical Trials. *Advances in Gerontology*, 2014, vol. 4, no. 4 pp. 346-361.

3. Akverdieva G.A. Demukhamedova S.D., Godjayev N.M. Theoretical study of thymomimetic peptide H-Lys-Glu-OH (Vilon) and its complex with the receptor. *Conference proceedings "Modern Trends in Physics"*, Baku 01-03 May, 2019, ISSN 2522-4352, pp. 165-169

4. Годжаев Н.М., Максумов И.С., Исмаилова Л.И. Программа полуэмпирического расчета конформаций молекулярных комплексов. *Журнал структурной химии*, 1983, т. 24, № 4, с.147-148 [Godjayev N.M., Maksumov I.S., Ismailova L.I. Program of semiempirical calculations of conformations of molecular complexes. *Jurnal Structurnoy Chimii*, 1983, vol. 24, no. 4, pp. 147-148. (In Russ.)]

5. Akverdieva G.A., Godjayev N.M. Improvement of program of calculation of molecular conformation. *J. Modern Technology & Engineering*, 2017, vol. 2, pp. 140-145.

6. Allinger N.L., Yuh Y., QCPE 395, Quantum chemistry program exchange, Indiana Univ., Indiana, 1982.

7. Trott O., Olson A. J., AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading, *Journal of Computational Chemistry*, 2010, vol. 31, pp. 455-461, DOI: 10.1002/jcc.21334.

8. DeLano W.L. The PyMOL molecular graphics system, 2010, URL: http://www.pymol.org.

MOLECULAR MODELING OF VILON

Akverdieva G.A., Demukhamedova S.D., Godjayev N.M.

Institute for Physical Problems, Baku State University Z. Khalilov st.23, AZ1148, Baku, Azerbaijan; e-mail: hagverdigulnara@gmail.com

Abstract. In this work, thymomimetic vilon (Lys-Glu) was studied by molecular modeling methods. Conformational profiles of the dipeptide were studied in the framework of molecular mechanics, electronic characteristics were analyzed using quantum chemical calculations, and molecular docking of the studied ligand with a T-cell receptor was carried out. The energy and geometric parameters of stable structures of the molecule, the effective charges of atoms, the population coefficients of atomic orbitals, the dipole moment, the energy gap, contours and electrostatic potential maps are calculated. It was found that in the folded conformation, the side chains of the lysine and glutamic acid residues interact more efficiently than in the unfolded conformation, which leads to the formation of a salt bridge between the N atom of the amino group of the Lys side chain and the O atoms of the carboxyl group of the Glu side chain. It was shown that this structure is more stable in electronic parameters, and also well complements the cleft on the surface of a specific receptor, forming a stable complex, characterized by a high binding energy. The data obtained allowed us to evaluate folded structure as the biologically active conformation of vilon. The results of the study provide an improved description of the structural and functional relationships of the thymomimetics.

Key words: molecular mechanics, quantum chemistry, molecular docking, vilon, bioactive conformation