ТРЕХМЕРНАЯ СТРУКТУРА МОЛЕКУЛЫ КАЗОКСИНА А Ахмедов Н.А., Агаева Л.Н., Аббаслы Р.М., Исмаилова Л.И.

Бакинский государственный университет, Институт физических проблем ул. 3. Халилова, 23, г. Баку, Азербайджан; e-mail: Namiq.49@bk.ru Поступила в редакцию: 16.06.2021

Аннотация. Методом теоретического конформационного анализа исследованы конформационные возможности молекулы казоксина A (Tyr1-Pro2-Ser3-Tyr4-Gly5-Leu6-Asn7-NH₂). Потенциальная функция системы выбрана в виде суммы невалентных, электростатических и торсионных взаимодействий и энергии водородных связей. Найдены низкоэнергетические конформации молекулы казоксина A, значения двугранных углов основных и боковых цепей аминокислотных остатков, входящих в состав молекулы, оценена энергия внутри- и межостаточных взаимодействий. Показано, что пространственная структура молекулы казоксина A представляется конформациями четырнадцати шейпов пептидного скелета. Полученные результаты могут быть использованы для выяснения структурной и структурно-функциональной организации молекул казоксинов. *Ключевые слова:* экзорфин, казоксин, опиоид, структура, конформация.

Регуляторные пептиды, впервые обнаруженные во второй половине XX века, активно изучаются как физиологами, так и фармакологами, поскольку область биологической активности пептидов чрезвычайно широка. Они являются одним из главных звеньев, объединяющих три регуляторные системы организма – нервную, эндокринную и иммунную в единое целое. В настоящее время у разных видов животных и у человека охарактеризовано уже более 9000 физиологически активных пептидов. Это короткие цепочки аминокислот (2-70 остатков), выполняющие функцию сигнальных молекул. Большинство таких пептидов нельзя с уверенностью относить ни к нейромедиаторам, ни к гормонам, поскольку они синтезируются как нейронами (передавая сигнал на уровне синапса), так и клетками периферических тканей (передавая сигнал на более дальние расстояния, подобно гормонам). Для регуляторных пептидов характерно воздействие сразу на многие системы организма.

Опиоидные пептиды в настоящее время считаются наиболее изученной группой сигнальных веществ пептидной природы. Опиум вызывает обезболивание, успокоение и засыпание, также эйфорическое состояние и ряд вегетативных реакций. Эти пептиды бывают животного и растительного происхождения. Ряд экзогенных пептидов, получаемых с пищей, обладают опиоподобными свойствами. Такие пептиды были названы экзорфинами. Открытие опиоидной активности пептидных компонентов пищи послужило основанием предположить, что некоторые виды пищи могут воздействовать на центральную нервную систему подобно опиатным препаратам. Обнаружен ряд молочных экзорфинов, имеющих свойства антагонистов опиоидных рецепторов. К ним относятся казоксины А, В, С, человеческий казоксин D, а также лактоферроксины А, В и С. Возможность образования этих пептидов при гидролизе соответствующих белков пептидазами желудочно-кишечного тракта доказана *in vitro*.

Казоксины и казоморфины представляют собой пептиды, которые воздействуют на опиоидную систему, которая влияет на темп пищеварения. Казоморфины являются опиоидными агонистами (активаторами), а казоксины – опиоидными антагонистами. Казеин обладает высоким содержанием казоксинов и казоморфинов, что объясняет сниженную пропускную способность после потребления (поскольку активация опиоидной системы снижает моторику кишечника). Физиологические действие антагонистических экзорфинов до сих пор изучено очень слабо. Некоторые молочные экзорфины (казоморфины, казоксины, лактоферроксины) могут не только образовываться при переваривании молока в желудочно-кишечном тракте, но и содержаться в сырах, поскольку технология изготовления сыра связана с ферментативной обработкой [1-3].

Нами были исследованы структурно-функциональные организации опиоидных пептидов энкефалинов, эндорфинов, эндоморфинов, динорфинов, неоэндорфинов, адренорфина, а в настоящее время исследуется пространственная структура экзорфинов. Эта работа является продолжением наших предыдущих исследований [4-10].

Расчет молекулы выполнен с помощью метода теоретического конформационного анализа. Потенциальная функция системы выбрана в виде суммы невалентных, электростатических и торсионных взаимодействий и энергии водородных связей. Невалентные взаимодействия были оценены по потенциалу Леннарда-Джонса. Электростатические взаимодействия рассчитывались в монопольном приближении по закону Кулона с использованием парциальных зарядов на атомах. Конформационные возможности молекулы рубисколина изучены в условиях водного окружения, в связи, с чем величина диэлектрической проницаемости принята равной 10. Энергия водородных связей оценивалась с помощью потенциала Морзе. В наших вышеупомянутых работах подробно описаны используемые потенциальные функции.

При изложении результатов расчета использована классификация пептидных структур по конформациям, формам основной цепи и шейпам пептидного скелета. Конформационные состояния полностью определяются значениями двугранных углов основной и боковых цепей всех аминокислотных остатков, входящих в данную

	Форма	Интервал энергии, ккал/моль					
Шейп	основной цепи	0-1	1-2	2-3	3-4	4-5	5>
eee	BBBB	1	2	5	1	1	14
eff	BRRR	-	-	-	-	-	20
eef	BBRR	1	4	5	1	-	12
efe	BRBB	3	1	4	-	-	16

Таблица 1. Энергетическое распределение конформаций фрагмента Tyr1-Pro2-Ser3-Tyr4 казоксина А

молекулу. Формы основной цепи фрагмента образуются сочетаниями форм R, B, L остатков в данной последовательности. Формы основной цепи дипептида могут быть разделены на два класса – свернутые (f) и развернутые (e) формы, которые названы шейпами. Все конформации группируются по формам основной цепи, а формы – по шейпам. Для обозначения конформационных состояний остатков использованы идентификаторы типа X_{ii}, где X определяет низкоэнергетические области конформационной карты

$$\varphi - \psi : R(\varphi, \psi = -180^{\circ} - 0^{\circ}), B(\varphi = -180^{\circ} - 0^{\circ}, \psi = 0^{\circ} - 180^{\circ}), L(\varphi, \psi = 0^{\circ} - 180^{\circ})$$

 $P(\varphi = 0^{\circ} - 180^{\circ}, \psi = -180^{\circ} - 0^{\circ});$ ij...=11...,12...,13...,21... определяет положение боковой цепи ($\chi_1, \chi_2...$), причем индекс 1 соответствует значению угла в пределах от 0 до 120°, 2 – от 120° до -120°, и 3 - от -120° до 0°.

Обозначения и отсчеты углов вращения соответствуют номенклатуре IUPAC-IUB [11].

Трехмерная структура молекулы казоксина A (Tyr1-Pro2-Ser3-Tyr4-Gly5-Leu6-Asn7-NH₂) была исследована фрагментарно. Сначала, на основе низкоэнергетических конформаций соответствующих аминокислотных остатков изучена пространственная структура N-концевого тетрапептидного фрагментаTyr1-Pro2-Ser3-Tyr4 и С-концевого тетрапептидного фрагмента Tyr4-Gly5-Leu6-Asn7-NH₂ молекулы казокцина A и определены их стабильные конформации. На втором этапе, на основе низкоэнергетических конформаций N-концевого тетрапептидного фрагментаTyr1-Pro2-Ser3-Tyr4 и C-концевого тетрапептидного фрагментаTyr1-Pro2-Ser3-Tyr4 и C-концевого тетрапептидного фрагмента Tyr4-Gly5-Leu6-Asn7-NH₂ молекулы была рассчитана пространственная структура казоксина A (Tyr1-Pro2-Ser3-Tyr4-Gly5-Leu6-Asn7-NH₂).

В N-концевой тетрапептидный фрагмент Tyr1-Pro2-Ser3-Tyr4 входит аминокислотный остаток пролин. Известно, что перед пролином R форма основной цепи является высокоэнергетической. Поэтому для данного тетрапептидного фрагмента рассчитаны конформации четырех шейпов. Энергетическое распределение рассчитанных конформаций N-концевого тетрапептидного фрагментаTyr1-Pro2-Ser3-Tyr4 молекулы казокцина A показано в таблице 1. Результаты расчета показывают, что в энергетический интервал 0–5 ккал/моль попадают конформации трех шейпов еее, eef, efe. Только конформации шейпа eff оказались высокоэнергетическими, их относительная энергия выше 5 ккал/моль. Поэтому для расчета трехмерной структуры молекула казоксина A выбраны конформации трех шейпов еее, eef и efe N-концевого тетрапептидного фрагмента Tyr1-Pro2-Ser3-Tyr4 молекулы.

	Форма	Интервал энергии, ккал/моль					
Шейп	основной цепи	0-1	1-2	2-3	3-4	4-5	5>
eee	BBBB	-	-	2	8	4	11
	R L B B	-	-	3	5	2	15
fff	R R R R	1	8	7	4	3	2
	B P R R	2	3	7	5	3	1
eef	BBRR	1	1	3	5	4	7
	R L R R	-	1	-	3	5	12
eff	R P R R	-	-	2	2	2	15
	BRRR	-	-	1	3	4	13
efe	BRBB	-	-	3	4	2	12
	R P B B	1	1	6	5	4	4
fef	R B R R	-	2	3	4	5	7
	BLRR	-	-	5	1	4	11
fee	R B B B	-	1	4	2	9	5
	BLBB	-	-	4	5	2	10
ffe	R R B B	-	-	1	5	10	5
	BPBB	-	-	1	3	11	6

Таблица 2. Энергетическое распределение конформаций фрагмента Tyr4-Gly5-Leu6-Asn7 казоксина А

Шойн	Vandanyang	Энерго			
шеип	конформация	U _{Heb}	Uэл	U _{topc}	Uoth
efefff	$B_3RB_1R_2RR_{21}R_{31}$	-20,8	1,9	6,4	5,2
efefee	$B_3RB_1B_3LB_{32}B_{31}$	-20,2	1,8	5,4	4,7
efeffe	$B_3RB_1B_3PB_{21}B_{31}$	-19,8	1,7	4,6	4,2
eefeee	$B_1BR_1B_1BB_{21}B_{31}$	-21,8	1,0	5,6	2,5
eefeee	$B_1BR_1R_2LB_{21}B_{31}$	-20,2	1,2	4,3	3,0
eefeef	$B_1BR_1B_2BR_{21}R_{31}$	-23,8	1,7	6,6	2,3
efeefe	$B_1BR_1B_2RB_{31}B_{31}$	-25,8	-0,3	8,4	0
efeefe	$B_1BR_1R_2PB_{31}B_{31}$	-22,5	0,8	5,1	1,2
efeffe	$\mathbf{B}_1\mathbf{B}\mathbf{R}_1\mathbf{B}_1\mathbf{P}\mathbf{B}_{21}\mathbf{B}_{31}$	-22,1	0,3	7,5,3	3,2
eeeeee	$B_1BB_3B_2BB_{21}B_{31}$	-20,3	1,4	6,1	4,8
eeefff	$B_1BB_3B_1PR_{21}R_{31}$	-22,8	1,5	6,9	3,3
eeeef	$B_1BB_3B_2BR_{21}B_{31}$	-21,1	1,6	5,7	3,9
eeeef	$B_1BB_3R_2LR_{21}B_{31}$	-21,5	1,9	6,5	4,5
eeeefe	$B_1BB_3R_3PB_{31}B_{31}$	-21,6	0,9	7,1	4,1
eeefef	$B_1BB_3R_3BR_{21}R_{21}$	-23,8	1,4	6,6	1,9
eeefef	$B_1BB_3B_1LR_{32}R_{31}$	-21,7	1,5	6,3	3,9
eeefee	$\mathbf{B}_1\mathbf{B}\mathbf{B}_3\mathbf{R}_3\mathbf{B}\mathbf{B}_{32}\mathbf{B}_{31}$	-21,3	1,0	6,2	3,6
eeefee	$B_1BB_3B_3LB_{32}B_{31}$	-23,6	0,9	5,5	0,5
eeeffe	$\overline{B_1BB_3R_3RB_{21}B_{31}}$	-20,9	1,2	5,8	3,9

Таблица 3. Относительная энергия и энергетические вклады (ккал/моль) невалентных (U_{нев.}), электростатических (U_{эл.}), торсионных (U_{торс.}) взаимодействий предпочтительных конформаций молекулы казоксина А

В аминокислотной последовательности С-концевого тетрапептидного фрагмента Tyr4-Gly5-Leu6-Asn7-NH₂ молекулы казоксина А входит аминокислотный остаток глицин и известно, что у него низкоэнергетическими являются четыре формы основной цепи R, B, L, P. Поэтому во всех восьми возможных шейпах пептидного скелета пришлось считать конформации двух форм основной цепи. Энергетическое распределение рассчитанных конформаций С-концевого тетрапептидного фрагмента Tyr4-Gly5-Leu6-Asn7-NH₂ молекулы казокцина А показано в таблице 2. Результаты расчета показывают, что в энергетический интервал 0–5 ккал/моль попадают конформации восьми шейпов, шестнадцати форм основной цепи. Для расчета трехмерной структуры молекула казоксина А выбраны конформации всех шестнадцати форм основной цепи С-концевого тетрапептидного фрагмента Туr4-Gly5-Leu6-Asn7-NH₂ молекулы казоксина А выбраны конформации всех шестнадцати форм основной цепи С-концевого тетрапептидного фрагмента Туr4-Gly5-Leu6-Asn7-NH₂ молекулы казоксина А выбраны конформации всех шестнадцати форм основной цепи С-концевого тетрапептидного фрагмента Туr4-Gly5-Leu6-Asn7-NH₂ молекулы.

Для исследования пространственной структуры молекулы казоксина А начальные приближения формировались на основе трех форм основной цепи N-концевого тетрапептидного фрагмента Tyr1-Pro2-Ser3-Туr4 и шестнадцати форм основной цепи C-концевого тетрапептидного фрагмента Tyr4-Gly5-Leu6-Asn7-NH₂ молекулы. Поэтому на первом этапе были рассчитаны несколько сот конформаций гептапептидной молекулы казоксина А. Результаты расчета показали, что возникает энергетическая дифференциация между конформациями, формами основных цепей и шейпами. В энергетический интервал 0–7,0 ккал/моль попадают конформации четырнадцати шейпов пептидного скелета. Эти шейпы представлены девятнадцатью формами основной цепи. Из каждой формы выбраны самые стабильные конформации, которые представлены в таблице 3. Здесь указаны энергетические вклады невалентных (U_{нев}), электростатических (U_{эл.}), торсионных (U_{торс.}) взаимодействий и относительная (U_{отн.}) энергия оптимальных конформаций молекулы казоксина А. Энергия внутри- и межостаточных взаимодействий, геометрические параметры трех конформаций, относительная энергия которых меньше 5,0 ккал/моль представлены в таблицах 4, 5. На рисунке 1 показано пространственное расположение аминокислот в этих низкоэнергетических конформациях молекулы.

N-концевой трипептидный участок Tyr1-Pro2-Ser3 молекулы казоксина А является конформационно жестким, представлен тремя шейпами (eef, eee, efe) и тремя формами 5.0 ккал/моль представлены в таблицах 4, 5.

Энергия невалентных взаимодействий в низкоэнергетических конформациях изменяется в энергетическом интервале (-23,8)–(-19,8) ккал/моль, электростатических взаимодействий (-0,3)–(1,9) ккал/моль, торсионных взаимодействий (4,3)–(8,4)ккал/моль (табл. 3) основной цепи (BBR, BBB, BRB). С-концевой тетрапептидный участок Туг4-Gly5-Leu6-Asn7-NH₂ молекулы является конформационно лабильным. Шейп ееf N-концевого трипептидного участока молекулы представлен шестью низкоэнергетическими формами основной цепи. Их относительная энергия изменяется в энергетическом интервале 0–3,2 ккал/моль (табл. 3). Глобальной конформацией молекулы казоксина А является конформация B₁BR₁B₂RB₃₁B₃₁ шейпа ееfefe. Конформация является выгодной по невалентным и элетростатическим взаимодействиям (табл. 3). В этой конформации возникают водородные связи между атомом N-H Tyr1 и C=O атомом основной цепи Tyr1, между атомом N-H Tyr1 и C=O атомом N-H атомом N-H атомом боковой цепи Asn7. ЗдесьN- и C- концы молекулы казоксина сближены в пространстве, при этом возникают эффективные

MODELLING IN BIOPHYSICS

взаимодействия между ними (рис. 1а). Взаимодейтствия Tyr1 с остальными остатками составляет (-13,7) ккал/моль, Pro2 с остатками - (-0,9) ккал/моль, Ser3 с остатками - (-1,6) ккал/моль, Tyr4 с остатками (-7,3) ккал/моль, Gly5 с остатками (-2,9) ккал/моль (табл. 4).

Шейп еее N-концевого трипептидного участока молекулы представлен десятью низкоэнергетическими формами основной цепи. Их относительная энергия изменяется в энергетическом интервале 0,5–4,8 ккал/моль (табл. 3). Вторая низкоэнергетическая конформация молекулы казоксина A является B₁BR₁B₂RB₃₁B₃₁ шейпа еееfee (рис. 1в).

Таблица 4. Энергия внутри-и межостаточных взаимодействий (ккал/моль) в конформациях молекулы казоксина A: $B_1BR_1B_2RB_{31}B_{31}$ ($U_{\text{отн}}=0$ ккал/моль, 1-я строка), $B_1BB_3B_3LB_{32}B_{31}$ ($U_{\text{отн}}=0,5$ ккал/моль, 2-я строка), $B_3RB_1B_3PB_{21}B_{31}$ ($U_{\text{отн}}=4,2$ ккал/моль, 3-я строка)

Tyr1	Pro2	Ser3	Tyr4	Gly5	Leu6	Asn7	
19,7	-15,5	-16,0	-11.8	-3.4	-0.8	0.8	
14,3	-18,5	-31,5	-2.5	-0.4	0	-0.4	T1
19,7	-16,4	-16,0	-15.5	-10.9	0	0	1 yi i
	1,3	-8,0	-5.0	-9.7	-3.4	-0.4	
	0,8	-9,7	-2.1	0	0	0	Dro?
	1,3	-4,1	-5.5	-6.7	-5.0	0	F102
		1,3	-10,5	-5.0	-8.8	-15.5	
		4,6	-9,2	-4.6	-5.0	-13.9	Sor ³
		1,7	-9,7	-4.2	-0.4	0	3615
			5,5	-2,9	-4.6	-9.2	
			2,1	-9,7	-2.1	-0.4	Tyr/
			4,6	-10,5	-0.4	-0.8	1 y14
				5,0	-7,6	-4.2	
				1,7	-14,3	-2.5	Gly5
				6,7	-4,6	-3.4	City5
					0	-7,1	
					1,3	-4,6	Leu6
					-1,3	-1,3	Leuo
						-2,1	
						-1,7	Asn7
						-1,7	A3117

Таблица 5. Геометрические параметры (град.) оптимальных конформаций молекулы казоксина А

Остоток	Конформации						
Octatok	$B_1BR_1B_2RB_{31}B_{31}$	$B_1BB_3B_3LB_{32}B_{31}$	$B_3 R B_1 B_3 P B_{21} B_{31}$				
Tyr1	-69 66 157 66 89 0	-71 154 161	-67 161 161				
Pro2	-60 91 -170	-6 0 85 172	-60 -76 179				
Ser3	-100 -73 -171 55 178	-86 138 -175 -60 180	-97 124 179 57 179				
Tyr4	-97 149-171 -168 64 0	-106 164 180 -59 89 0	-106 147 -179 -60 90 0				
Gly5	-64 -48 -176	72 58 -178	89 -72 175				
Leu6	-88 114 -178 -71 68 179 169	-97 103 -177 -52 179 -174 -179	-104 124 180 177 65 179 176				
Asn7	-121 139 180 -51 103	-135 139 180 -57 100	-115 140 180 -59 95				
ΔU	0 ккал/моль	0,5 ккал/моль	4,2 ккал/моль				

Примечание: значения двугранных углов даны в последовательности φ, ψ, ω, χ₁, χ₂,...

Рисунок 1. Стабильные конформации молекулы казоксина А

Эта конформация в основном стабилизуруется за счет ди- и трипептидных взаимодействий. Взаимодейтствия Туг1 с остальными остатками составляет (-10,9) ккал/моль, Pro2 с остатками Ser3, Tyr4 (-2,8) ккал/моль, Ser3 с остатками Tyr4-Gly5-Leu6 (-3,2) ккал/моль, Tyr4 с остатками Gly5-Leu6 (-2,7) ккал/моль, Gly5 с остатками Leu6-Asn7 (-3,3) ккал/моль (табл. 4). В этой конформации возникает водородная связь между атомом N-H Tyr1 и C=O атомом основной цепи Ser3. Шейп еfe N-концевого трипептидного участка молекулы представлен тремя низкоэнергетическими формами основной цепи. Их относительная энергия изменяется в энергетическом интервале 4,2–5,2 ккал/моль (табл. 3). Эти конформации проигрывают по невалентным и электростатическим взаимодействиям. Самой стабильной конформацией этой группы является В₃RB₁B₃PB₂₁B₃₁ шейпа efeffe, относительная энергия которой равна 4,2 ккал/моль (табл.3). В этой конформации образуется водородная связь между С=O атомом основной цепи Ser3 и N-H атомом боковой цепи Asn7.

Таким образом, пространственную структуру молекулы казоксина А можно представить четырнадцатью структурными типами и можно предположить, что молекула свои физиологические функции осуществляет именно в этих структурах. На основе полученных трехмерных структур, можно предположить для данной молекулы ее синтетические аналоги. Теоретический конформационный анализ гептапептидной молекулы казоксина А привел к такой структурной организации молекулы, которая не исключает реализацию молекулой целого ряда функций, требующих строго специфических взаимодействий с различными рецепторами.

Список литературы / References:

1. Чеснокова Е.А., Сарычева Н.Ю., Дубынин В.А., Каменский А.А. Опиоидные пептиды, получаемые с пищей и их влияние на нервную систему. *Успехи физиологических наук*, 2015, т. 46, № 1, с. 22-46. [Chesnokova E.A., Sarycheva N.Y., Dubynin V.A., Kamensky A.A. Food-Derived Opioid Peptides and Their Neurological Impact. *Advancesin Physiological Sciences*, 2015, vol. 46, no. 1, pp. 22-46. (InRuss.)]

2. Соколов О.Ю., Кост Н. В., Андреева О.О., Корнеева Е.В., Мешавкин В.К., Тараканова Ю.Н., Дадаян А.К., Золотарев Ю.А., Грачев С.А., Михеева И.Г., Зозуля А.А. Возможная роль казоморфинов в патогенезе аутизма. *Психиатрия*, 2010, т. 45, № 3, с.29-35. [Sokolov O.Yu., Kost N.V., Andreeva O.O., Korneeva E.V., MeshavkinV.K., Tarakanova Yu.N., Dadayan A.K., Zolotarev Yu.A., Grachev S.A., Mikheeva I.G., Zozulya A.A. The possibl eroleof casomorphin sinpathogenesis of autism. *Psixiatriya*, 2010, vol. 46, no. 3, pp. 29-35. [In Russ.]]

3. Sienkiewiez-Szlapka E., Jarmolowska B., Krawczuk S., Kostyara E. Contents of agonistic and antagonistic opioid peptides in different cheese varieties. *Int. Dairy J.*, 2009, vol. 19, no. 4, pp. 258-263.

4. Ахмедов Н.А. Теоретический конформационный анализ молекул β -казоморфина, валмуцептина и морфицептина. *Молекулярная Биология*, 1989, т. 23, с. 240-248. [Akhmedov N.A. Teoretical conformation analysis of β -cazomorphin, valnuceptin and morphiceptin molecules. *Molecular.Biol.*, 1989, vol. 23, pp. 240-240. (In Russ.)]

5. Ахмедов Н.А., Годжаев Н.М., Сулейманова Е.В., Попов Е.М. Структурная организация молекул [Met] энкефалина и эндорфинов. *Биоорганическая химия*, 1990, т. 16, с. 649-667. [Akhmedov N.A., Godjaev N.M., Suleymanova E.V., Popov E.M. Structural organization of the [Met] encephalin and endorphins molecules. *Bioorganic chemistry*, 1990, vol. 16, pp. 649-667. (In Russ.)]

6. Akhmedov N.A., Agayeva L.N., Ismailova L.I., Godjaev N.M. Thespatial structure of the cardio active peptides. *Current Topics in Peptide and Protein Research*, 2010, vol. 11, pp. 87-93.

7. Гаджиева Ш.Н., Ахмедов Н.А., Масимов Э.А., Годжаев Н.М. Пространственная структура молекулы Thr-Pro-Ala-Glu-Asp-Phe-Met-Arg-Phe-NH₂. *Биофизика*, 2013, т. 58, вып. 4, с. 587-590. [Gadjieva Sh.N., Akhmedov N.A., Masimov E.A., Godjaev N.M. Spatial Structure of Thr-Pro-Ala-Glu-Asp-Phe-Met-Arg-Phe-NH₂. *Biophysics*, 2013, vol. 58, pp. 587-590. (In Russ.)]

8. Akhmedov N.A., Ismailova L.I., Abbasli R.M. et al. Spatial Structure of Octarphin molecule. *IOSR J. Applied Physics (IOSR-JAP)*, 2016, vol. 8, pp.66-70.

9. Hasanov E.M., Akhmedov N.A. Spatial Structure of Peptide BAM-20P. International Journal of Innovative Science and Research Technology, 2018, vol. 3, pp.72-76. ISSN: №4-2456-2165.

10. Akhmedov N.A., Abbasli R.M., Agayeva L.N., Ismailova L.I. Three-dimensional structure of exorpin B5 molecule. *Conference proceedings Modern Trends In Physics*, 2019, pp. 201-104.

11. IUPAC-IUB. Quantities, Units and Symbols in Physical Chemistry, Blackwell Scientific, Oxford 1993.

SPATIAL STRUCTURE OF CASOXIN A MOLECULE Akhmedov N.A., Agayeva L.N., Abbasli R.M., Ismailova L.I. Baku State University, Institute for Physical Problems Z. Khalilov Str. 23, Baku, Azerbaijan, e-mail: Namiq.49@bk.ru

Abstract. By the method of the theoretic conformational analysis the conformational capabilities of the Casoxin A molecule (Tyr1-Pro2-Ser3-Tyr4-Gly5-Leu6-Asn7-NH₂) were studied. The potential function of the system is chosen as the sum of non-valent, electrostatic and torsion interactions and the energy of hydrogen bonds. Low-energy conformations of the casoxin A molecule, the values of the dihedral angles of the main and side chains of amino acid residues that make up the molecules are founded; the energy of intra- and inter-residual interactions is estimated. It is shown that the spatial structure of the casoxin A molecule can be represented by the conformations of fourteen shapes of the peptide backbone. The results obtained can be used to elucidate the structural and structural-functional organization of casoxin molecules. *Key words: exorphin, casoxin, opioid, structure, conformation.*