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Abstract. The tumor growth computational simulation is a fundamental step for the cancer management 
future, especially in this work the glioblastoma is modeled by a reaction-diffusion system. It is shown 
that the following mathematical models can simulate tumor behavior, analyzing the control parameters 
of the model that could help to avoid the tumor aiming to increase the percentage of survivors of this 
ailment.  
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INTRODUCTION 

 
Cancer or neoplasm is defined as a phenomenon originating when a group of cells grows without control with certain 

characteristics like: proliferative, invasive and migratory advantages. This ailment is one of the most lethal diseases that 
takes millions of lives every year. Indeed, the number of people suffering from cancer is increasing annually, therefore it 
is important to analyze the factors that could contribute to the spread of tumors.  

Glioblastoma is the most common malignant primary brain tumor, representing approximately 57% of all gliomas 
and 48% of all primary malignant central nervous system (CNS) tumors. Despite recent advances in multimodality therapy 
for glioblastoma incorporating surgery, radiotherapy, systemic therapy (chemotherapy, targeted therapy), and supportive 
care, the overall prognosis remains poor and long-term survival is rare, just with less 22% survivors after 5 years and in 
most cases 14 months is the life expectancy. If the biologic processes that characterize this illness are known, new 
molecular techniques will be put in clinical practice, improving the prevention strategies and patient management. 
However, it is still difficult to integrate computational oncology in clinic practice, and requires different professional 
profile collaboration to achieve it. 

At this point, the computational dimensional (2D) simulations are considered as a powerful tool. There are certain 
mathematical models that help to understand the way glioblastoma grows: continue models and discrete models. The 
cellular automata discrete models are useful to model effects at cellular level and interactions based on agents.  
Nevertheless, continuous models are more appropriate if it is intended to model interactions and temporal effects at very 
different scales, helping to advance toward growth models more personalized. 

A new minimal model of glioblastoma growth. 
It is important to know the dynamics of cancer cell growth in order to propose new in-silico research methodologies 

to understand the underlying mechanisms. This future knowledge could help improve current brain cancer treatment 
techniques. Mathematical models of tumor growth try to represent, through functions and laws, the complex mechanisms 
of oncogenesis. In this research work, a multiscale mathematical model of angiogenesis is proposed based on the 
continuous Proliferation Invasion Hypoxia Necrosis Angiogenesis (PIHNA) model [1-9]. The new model considers the 
production and consumption of angiogenic factors, cell diffusion, chemotaxis, and macroscopic tissue processes such as 
tumor invasion and growth. 

The reaction-diffusion equations of the proposed model are the following: 
 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝛻𝛻 ∙ �𝐷𝐷𝜕𝜕 𝛻𝛻𝛻𝛻� + 𝜌𝜌𝜕𝜕𝛻𝛻(1 − 𝑇𝑇) + �𝜃𝜃𝑚𝑚𝜕𝜕𝐻𝐻𝑚𝑚𝜕𝜕�𝑚𝑚 − �𝜃𝜃𝜕𝜕𝑚𝑚𝐻𝐻𝜕𝜕𝑚𝑚�𝛻𝛻                                                   (1) 
𝜕𝜕𝑚𝑚
𝜕𝜕𝜕𝜕

= 𝛻𝛻 ∙ (𝐷𝐷𝑚𝑚 𝛻𝛻𝑚𝑚) + 𝜌𝜌𝑚𝑚𝑚𝑚(1 − 𝑇𝑇) + �𝜃𝜃𝜕𝜕𝑚𝑚𝐻𝐻𝜕𝜕𝑚𝑚�𝛻𝛻 − �𝜃𝜃𝑚𝑚𝜕𝜕𝐻𝐻𝑚𝑚𝜕𝜕�𝑚𝑚 − (𝜃𝜃𝑚𝑚𝑚𝑚𝐻𝐻𝑚𝑚𝑚𝑚)𝑚𝑚                            (2) 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝛻𝛻 ∙ (𝐷𝐷𝜕𝜕 𝛻𝛻𝛻𝛻) + 𝜌𝜌𝜕𝜕𝑚𝑚𝑚𝑚 − 𝛾𝛾𝛾𝛾                                                                                  (3) 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝛻𝛻 ∙ (𝜒𝜒𝛾𝛾 𝛻𝛻𝛻𝛻) + 𝜌𝜌𝜕𝜕𝛾𝛾𝑚𝑚(1 −𝑁𝑁) + (𝜃𝜃𝜕𝜕𝑚𝑚𝐻𝐻𝜕𝜕)𝛾𝛾                                                                  (4) 
 

g (cell/cm3) is the proliferating cell density, m (cell/cm3) is the invasive cell density, a (mol/cm3) is the concentration of 
angiogenic factors and v (cell/cm3) is the vascularization density. From these variables, the total tumor density T can be 
defined such that: T=g+m. The terms of Eq. (1) take into account respectively: the cellular diffusion of proliferating cells, 
the cell proliferation due to the tumor growth and the phenotype change from one population to another that is mediated 
by the local availability of oxygen. This change is controlled by the Heaviside function such that: Hmg=1 if there is hypoxia 
and Hmg=0 if there is not hypoxia. So: Hgm=1-Hmg. While the terms of Eq. (2) only considers the cellular diffusion and 
the cell proliferation of the invasive cells. At this point, two cases are distinguished regarding the diffusion between g and 
m: when invasive cells are capable of greater mobility than proliferative cells (Dm >Dg), and vice versa (Dm <Dg). The 
terms of Eqs. (3) and (4) modeling that: Invasive m cells produce angiogenic factors a, which attract endothelial cells v  
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Table 1. Values for the control parameters taken for the glioblastoma simulation 
Da 𝜌𝜌𝜕𝜕𝑚𝑚 𝜌𝜌𝜕𝜕 𝜃𝜃𝑚𝑚𝑚𝑚 𝜃𝜃𝜕𝜕𝑚𝑚 O2hyp O2death [O2]a 𝛼𝛼𝜕𝜕 𝛼𝛼𝑚𝑚 𝛾𝛾 𝜑𝜑 𝑥𝑥 𝑘𝑘𝑚𝑚𝜕𝜕𝑚𝑚  
1x10-5 
cm2/s 

1x10-9 
mol/s 

𝜌𝜌𝜕𝜕
10 1.2 

day
s-1 

𝜃𝜃𝑚𝑚𝑚𝑚

10  
7 
mmHg 

0.7 
mmHg 

60 
mmH
g 

1x10-17 
mol/cel
ls ·s 

𝛼𝛼𝜕𝜕
5  𝛼𝛼𝜕𝜕 0.3 0.1 1x108 

cell/c
m3 

 
by chemotaxis. As a consequence, vascular density increases. To avoid introducing another non-linear term, we assume 
that the consumption of angiogenic factors by endothelial cells occurs at a constant ratio γ, where HvN=1 if there is hypoxia 
and HvN=0 if there is not hypoxia. Nevertheless, γ can be a function of a, m, or both. Also, the Eqs. (3) and (4) considers 
the chemical diffusion of concentration of angiogenic factors and the proliferation of invasive cells. The rest of control 
parameters are defined in the Table 1. 

The numerical simulation results show evidence of glioblastoma growth inhibition in at least one case for the control 
parameter values of Table 1. The model presents a situation under which the growth of a brain tumor is viable, which is 
promising for new methods or treatments of this type of brain pathology. 

Stability linear analysis. 
The Fixed points were obtained of the following equations:  

𝜌𝜌𝜕𝜕𝛻𝛻(1 − 𝑇𝑇) + �𝜃𝜃𝑚𝑚𝜕𝜕𝐻𝐻𝑚𝑚𝜕𝜕�𝑚𝑚 − �𝜃𝜃𝜕𝜕𝑚𝑚𝐻𝐻𝜕𝜕𝑚𝑚�𝛻𝛻 = 0 
𝜌𝜌𝑚𝑚𝑚𝑚(1 − 𝑇𝑇) + �𝜃𝜃𝜕𝜕𝑚𝑚𝐻𝐻𝜕𝜕𝑚𝑚�𝛻𝛻 − �𝜃𝜃𝑚𝑚𝜕𝜕𝐻𝐻𝑚𝑚𝜕𝜕�𝑚𝑚 − (𝜃𝜃𝑚𝑚𝑚𝑚𝐻𝐻𝑚𝑚𝑚𝑚)𝑚𝑚 = 0 

𝜌𝜌𝜕𝜕𝑚𝑚𝑚𝑚 − 𝛾𝛾𝛾𝛾 = 0 
𝜌𝜌𝜕𝜕𝛾𝛾𝑚𝑚(1 − 𝑁𝑁) + (𝜃𝜃𝜕𝜕𝑚𝑚𝐻𝐻𝜕𝜕)𝛾𝛾 = 0 

And its results, respectively: 

𝛻𝛻 = −𝑚𝑚
�𝜃𝜃𝑚𝑚𝑚𝑚 𝐻𝐻𝑚𝑚𝑚𝑚�

��𝜃𝜃𝑚𝑚𝑚𝑚  𝐻𝐻𝑚𝑚𝑚𝑚��
                                                                                     (5) 

𝑇𝑇 = 1  ó  𝑚𝑚 = 0                                                                                          (6) 
𝑚𝑚 = (𝜃𝜃𝑣𝑣𝑣𝑣𝐻𝐻𝑣𝑣𝑣𝑣) 

𝜌𝜌𝑣𝑣 (1−𝑚𝑚) 
                                                                                            (7) 

𝛾𝛾 = �𝜃𝜃𝑣𝑣𝑣𝑣 𝐻𝐻𝑣𝑣𝑣𝑣� 𝜌𝜌𝑎𝑎𝑚𝑚
𝜌𝜌𝑣𝑣  (1−𝑚𝑚) 𝛾𝛾

                                                                                         (8) 

 
 
 

The Jacobian of the model is: 
 

𝐽𝐽(𝛻𝛻,𝑚𝑚,𝛻𝛻, 𝛾𝛾) =

⎝

⎜
⎛
𝜌𝜌𝜕𝜕(1 − 𝑇𝑇) + (𝜃𝜃𝜕𝜕𝑚𝑚𝐻𝐻𝜕𝜕𝑚𝑚) (𝜃𝜃𝑚𝑚𝜕𝜕𝐻𝐻𝑚𝑚𝜕𝜕) 0

0 0
𝜌𝜌𝑚𝑚(1 − 𝑇𝑇) 0

0 0
𝜌𝜌𝜕𝜕𝑚𝑚 0

0 𝛾𝛾
 𝜌𝜌𝜕𝜕𝛾𝛾(1 − 𝑁𝑁) 0

0 𝜌𝜌𝜕𝜕𝑚𝑚(1 − 𝑁𝑁) − 𝜃𝜃𝑚𝑚𝜕𝜕𝐻𝐻𝜕𝜕𝑚𝑚⎠

⎟
⎞

 

 
And their trace and determinant are respectively: 
                             𝑇𝑇𝑇𝑇𝐽𝐽 = 𝜌𝜌𝜕𝜕(1 − 𝑇𝑇) + �𝜃𝜃𝜕𝜕𝑚𝑚𝐻𝐻𝜕𝜕𝑚𝑚� + 𝜌𝜌𝑚𝑚(1 − 𝑇𝑇)+ 𝜌𝜌𝜕𝜕𝑚𝑚(1 −𝑁𝑁) − 𝜃𝜃𝑚𝑚𝜕𝜕𝐻𝐻𝜕𝜕𝑚𝑚 
                                  |𝐽𝐽(𝛻𝛻,𝑚𝑚,𝛻𝛻, 𝛾𝛾)| = 0  
 
At consider the diffusion effect in Eqs. (1) to (4), the extended determinant is: 
 

�𝜆𝜆 �
1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

� − 𝐽𝐽(𝛻𝛻,𝑚𝑚,𝛻𝛻, 𝛾𝛾)+𝑘𝑘2 �

𝐷𝐷𝜕𝜕 0
0 𝐷𝐷𝑚𝑚

0 0
0 0

0 0
0 0

𝐷𝐷𝜕𝜕 0
0 𝜒𝜒 + 1

�� = 0 

And from here the eigenvalues are: 
𝜆𝜆1 = 𝜌𝜌𝜕𝜕(1 − 𝑇𝑇) − �𝜃𝜃𝜕𝜕𝑚𝑚𝐻𝐻𝜕𝜕𝑚𝑚� − 𝑘𝑘2𝐷𝐷𝜕𝜕 

𝜆𝜆2 = 𝜌𝜌𝑚𝑚(1 − 𝑇𝑇) − 𝑘𝑘2𝐷𝐷𝑚𝑚 
𝜆𝜆3 = −𝑘𝑘2𝐷𝐷𝜕𝜕 

𝜆𝜆4 = −𝑘𝑘2(𝜒𝜒 + 1) 
To finalize the section are presents the graphs of eigenvalues in Fig 1, using the control parameters values of Table 

1 and the fixed points given for Eqs. (5) to (6). In these graphs are presents the regions where there are instability zones 
and here are solved numerically the Eqs. (1) to (4). The 2D simulations are presented in the next section employing the 
numerical solution obtained previously.  
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Figure 1. a) Eigenvalues graphs λ1 and λ2 for T vs dm. b) Eigenvalues graphs λ1 and λ3 for dm vs Dg/Da 
 
The graphs of Fig. 1 shows that the sensitive control parameters are T, dm, and Dg / Da. A similar behavior is 

found for the case of the eigenvalues 1 and 4. In all cases a saddle-type instability (Turing saddle points) is found 
 

RESULTS OF COMPUTATIONAL 
 
After taking those equations, the simulation was made with “Python 3.8” in its version of 32-Bit. The simulation 
development was possible due to 4 libraries called: math, numpy, random and pickle. It was just taken the first, second 
and third coupled reaction-diffusion space-time PDE to do the 1st and 2nd code and later it was made the third code, 
modifying the previous ones taking the entire model to compare if the is a variation considering different values. The 
numerical solution is obtained by means of difference finite algorithm in the space with a mesh step dx=0.5 and the Euler 
ruler for the temporal evolution with step dt=0.001. 
Considering time as dimensionless, were obtained the followings results from the simulations: 

1. First simulation with Eqs. (1) to (3) where the parameter dm=Dm/Da >1 (associated with the diffusion of m) is 
defined with a value superior to general parameters (Fig. 2). The values are taken from control parameters are taken of 
Table 1 and the fixed points are given for Eqs. (5) to (8). 

2. Second simulation with Eqs. (1) to (3) where the parameter dm=Dm/Da (associated with the diffusion of m) is 
defined as with 0. It is: Dm=0 (Fig. 3). The values are taken from control parameters are taken of Table 1 and the fixed 
points are given for Eqs. (5) to (8). 

 
 

a)   b)                                              c)     
 

Figure 2. a) Growing tumor at t=1.9, b) Tumor starting its spread in the brain tissue at t=9.3, c) Tumor already spread 
in the brain tissue with t=33.4. When dm>1 

 

a) 

b) 
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a)                         b) 
Figure 3. a) Initial condition. b) Tumor that did not spread through the tissue and remains stable in time. When dm=0 

 

a)    b)                                                                 c)                                                                  
Figure 4. a) Tumor growing at t=0.1, b) Tumor starting its spread in the brain tissue at t=8.5, c) Tumor already spread 
in the brain tissue at t=10.49. When dm>1 
 

 
 
 
 
 
 

a) b)                             b) 
Figure 5. a) Tumor starting its spread in the brain tissue at t=8.8, b) Tumor already spread in the brain tissue at t=9.5. 
When dm>1 

 
3. Third simulation made with Eqs. (1) to (4) where the values are taken from control parameters are taken of Table 

1 and the fixed points are given for Eqs. (5) to (8) (Fig. 4). 
4. Fourth simulation made with Eqs. (1) to (4) where the values are taken from control parameters are taken of 

Table 1 and the fixed points are given for Eqs. (5) to (8). The v is taken is an inferior value than the third simulation (Fig. 
5).  
 

CONCLUSIONS 
 

From the numerical experiments and their simulations 2D, it was seen that some parameters contribute to the tumor 
growth and ingrowth simulations as it follows: 

 
● Increasing dm (invasive cell density) in the first simulation employing Eqs. (1) to (3), it was seen that 

the growth increased when taking the general parameter with a difference of t=0.6.  
● Taking Dm= 0, it’s seen that the tumor isn’t growing employing Eqs. (1) to (3). This means that by 

completely inhibiting the vascularization of the tumor, the lack of growth of the tumor is found.  
● It is seen that the tumor grows faster if it is taken the Eqs. (1) to (4) model. 
● In spite of decrease 𝛾𝛾 (vascularization), the tumor spreads. It could be interpreted as metastasis. 

 
Therefore, mathematical models can be used to simulate biological conditions under which the growth and decrease 

of a cerebral glioblastoma take place. This may be useful in future studies to find new treatments for this medical 
condition. 
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