МУТАЦИОННЫЙ АНАЛИЗ СТРУКТУРЫ ДРОЖЖЕВОЙ АРГИНИН ПЕРМИАЗЫ CAN1

Колтовая Н.А., Душанов Э.Б.

Объединенный институт ядерных исследований ул. Жолио-Кюри, 6, г. Дубна, 141980, РФ; e-mail: koltovaya@jinr.ru Поступила в редакцию 25.07.2022. DOI: 10.20930/rusjbpc.2022.0561

Аннотация. В настоящее время интенсивно изучается структура и функционирование трансмиттеров, насчитывающих более 250 членов в разных организмах и обеспечивающих поддержание рН и осмоса, транспорт аминокислот и нейромедиаторов, например, серотонина. Для этого класса белков характерна низкая гомология нуклеотидной последовательности, но схожая структура. Ферменты имеют цилиндрическую форму, образованную трансмембранными элементами, состоящими из α-спиралей. Хорошей моделью для изучения структуры и механизма транспорта может служить дрожжевая аргинин пермиаза Can1. Включение аргинина зависит от протонного насоса, таким образом Can1 катализирует H⁺/аргинин симпорт. Инактивация Can1 приводит к устойчивости к аналогу аргинина канаванину. Широкое использование Can1^R мутационной системы позволило отобрать среди нескольких тысяч мутаций одиночные missense мутации, инактивирующие пермиазу. На 3Д структуре фермента (590 а.о.) определены позиции 184 отобранных мутантных аминокислотных остатка. Построена стабильная динамическая модель пермиазы и распределение поверхностных зарядов. Анализ crucial аминокислотных остатков, любая замена которых вызывала инактивацию фермента, позволил расширить список наиболее существенных аминокислотных остатков, участвующих в транспорте аргинина. В дальнейшем планируется продолжить анализ отобранных аминокислотных остатков для более детального понимания механизма транспорта субстрата.

Ключевые слова: динамическая модель, распределение зарядов, локализация crucial аминокислот.

В настоящее время интенсивно изучается структура и функционирование трансмиттеров, насчитывающих более 250 членов в разных организмах и обеспечивающих поддержание pH [1,2] и осмоса [3], транспорт аминокислот [2] и нейромедиаторов, например, серотонина [4]. Для этого класса белков характерна низкая гомология нуклеотидной последовательности, но схожая структура. Ферменты имеют цилиндрическую форму, образованную α-спиралями, так называемыми трансмембранными элементами (TM).

Включение аминокислот опосредуются плазмо-мембранными пермиазами, принадлежащими к семейству транспортеров, найденных во всех живых организмах. Дрожжевая аргининовая пермиаза – гомодимер, состоящий из 590 а.о. организованных в 12 трансмембранных спиралей, фланкирующих гидрофильный хвост, направленный в цитоплазму. Пермиазы проявляют разный субстратный диапазон, так Can1 транспортирует аргинин и менее эффективно лизин. Включение аргинина зависит от протонного насоса. Can1 катализирует H^+ /аргинин симпорт. Кроме аргинина и лизина, пермиаза транспортирует также аналог аргинина – канаванин. У дрожжей нарушения гена аргинин пермиазы *CAN1* вызывают устойчивость к канаванину. Поскольку мутанты легко отбирать на среде с канаванином, то ген *CAN1* в течение многих лет используется для изучения закономерностей мутагенеза.

В базе данных PDB имеется несколько структур пермиаз для разных организмов: 1PV6, 1PV7, 3L1L. Используя их, мы построили модельную структуру дрожжевой пермиазы Can1 [5]. С- и N-концы молекулы направлены в цитоплазму. Молекулярная динамика показала устойчивость построенной структуры в течение 40 нс. Как видно из рис. 1 структура пермиазы (CanP) стабилизируется примерно через 5 нс (RMSD[N,C_A,C,O] ~ 5,5 A). Лиганд канаванин и его части (CanB) изначально стабильны и далее в течение моделирования сохраняют стабильность (RMSD[N,C_A,C,O] ~ 0,1-0,4 A), радикал канаванина CanR (RMSD[N_E,OXT,C_Z,NH₁,NH₂] ~ 0,7-0,9 A) и весь комплекс CanA (RMSD[N,C_A,C,O, N_E,OXT,C_Z,NH₁,NH₂] ~ 1,3 A).

Таким образом, структура молекулы пермиазы при моделировании изменилась (рис. 2, А), в распределении поверхностного заряда также наблюдаются изменения (рис. 2, Б). Поверхность, направленная в периплазму, отрицательно заряжена, а цитоплазматическая поверхность – положительно заряжена. В центре молекулы пермиазы располагается «пещера», открытая в сторону периплазмы. Это вход лиганда. Основная аминокислота аргинин имеет два основных центра: аминогруппу в α-положении и гуанидиновую в δ-положении. Гуанидиновая группа при протонировании становится сильно основной и способна образовывать множественные водородные связи. В молекулу канаванина по сравнению с аргинином добавлен атом кислорода в боковом радикале и снижено количество CH₂-групп. Из-за наличия дополнительного атома кислорода канаванин несет значительно меньший положительный заряд, чем аргинин. Таким образом, при взаимодействии субстрата с пермиазой существенную роль играет заряд периплазматической поверхности. В кристаллической структуре пермиазы вход лиганда сильно отрицательный, но при моделировании заряд снижается (рис. 2, Б).

Огромное количество накопленных мутаций позволяет провести детальный функциональный анализ пермиазы. Среди ~3000 мутаций выделили missense мутации. К инактивации фермента приводили 308 единичных несинонимических мутаций (SNPs – single nucleotide polymorphisms), вызывающих

Рисунок 1. Молекулярно-динамические расчёты аргининовой пермиазы Can1: структура белка CanP, канаванина CanB, радикала CanR и всей молекулы CanA. Внутри схематической стрелки изображена молекула канаванина. Красным (после моделирования) и фиолетовым (до моделирования) цветами в трехмерном изображении пермиазы указаны локализация crucial аминокислотных остатков

Рисунок 2. Молекулярная динамика аргининовой пермиазы: А – кристаллическая структура молекулы пермиазы и 40 нс-модель. Б - распределения поверхностного заряда в кристаллической структуре и в 40-нс-моделе

замену 154 из 590 а.о. Локализация отобранных мутаций на 3Д-структуре представлена на рисунке 3, А. Она удивительным образом напоминает картину локализации консервативных остатков бактериального антипортера AdiC [1] (рис. 3, Б). В работах китайских коллег [1,2] подробно изучена структура и механизм функционирования аминокислотного антипортера AdiC, определены аминокислотные остатки ответственные за формирование канала и связывающие лиганд. Эти данные облегчают нам анализ структуры и функционирования симпортера Can1.

Рисунок 3. (А) Локализация аминокислот, обусловленных одиночными missense (красный цвет) мутациями и инактивирующих аргинин пермиазу Can1. (Б) Локализация консервативных а.о. на структуре AdiC. Аминокислоты, инваринатные для AdiC, CadB и PotE, окрашены в желтый цвет

Рисунок 4. Выравнивание аминокислотных последовательностей белков Can1 и AdiC. ТМ-спирали обозначены синими полосками выше для AdiC или ниже последовательности для Can1. Остатки, взаимодействующие с субстратом отмечены звездочкой. Консервативные остатки в AdiC и Can1 помещены в красные ящики

На рисунке 4 приведены выравненные последовательности белков Can1 и AdiC [2], а в таблице 1 – консервативные аминокислотные остатки. Из 63 консервативных остатков 26 остатков встречаются в списке выделенных нами мутаций, инактивирующих пермиазу (выделены жирным).

Место входа субстрата формируется четырьмя полярными или заряженными аминокислотами: Gly100 (С-конец ТМ1), Туг172 (середина ТМ3), Glu301 (ТМ6), Тгр464 (середина ТМ10). Две из них встречаются в нашей выборке – Glu100 и Trp464. Так, мутация Trp464Arg приводит к замене ароматического Trp на положительно заряженный Arg, что, по-видимому, снижает эффективность связывания с положительно заряженным субстратом.

В отдельную группу можно выделить мутации, локализованные во внутреннем кольце трансмембранных элементов (табл. 2), формирующие канал связывания и транспорта субстрата.

Среди аминокислотных остатков обращают на себя внимание Gly118, Trp177, Thr180, Glu184, Gly224, Glu227, Gly229, Arg327, Ala389, Arg399 и Gly460, любая замена которых инактивирует белок. По-видимому, они играют ключевую роль в функционировании пермиазы. Эти аминокислотные остатки не относятся к консервативным. По-видимому, это дополнительная возможность выявления важных (crucial) сайтов. Локализация crucial аминокислот отмечена на рисунке 2, A, цветными кольцами. Видно, что часть из них (W177, T180, E184, A389,

G460) локализована во внутренних TM-элементах или предшествуют TM-элементу (Gly118, Arg327) и, таким образом, принимают участие в формировании центрального канала и связывания субстрата (табл. 2, выделены жирным). Полученные результаты показывают перспективность используемого подхода для изучения функционирования транспортеров.

Пермиаза функционирует в виде гомодимера. В димеризации гомодимера принимают участие четыре ТМэлемента по два от каждой молекулы [1]. Гидрофобные аминокислоты ТМ11 молекулы перемежаются неполярными остатками ТМ12 второй молекулы. В нашей коллекции мутаций к ним относятся, по-видимому, гидрофобные Р495 и Y501 (ТМ11). Дополнительные взаимодействия опосредуются N-терминальной частью ТМ3 и C-терминальной частью ТМ10. Димеризация может привести к изменению структуры и сдвигу некоторых ТМ. В дальнейшем планируется построить модель гомодимера. И провести анализ локализации мутантных аминокислот в канале транспорта субстрата.

Элемент	Аминокислотные остатки
структуры	
TM1	G99 , G103 , G105 , F107
TM2	G118, A122, L127, A133, M143
Петля2-3	P148, R159, P163, G166
TM3	Y173, W174 , I179
TM4	L202, I212, N217
Петля 4-5	K222
TM5	I237, G239, G251
TM6	G281, F283, S288, I290, F297, G299, E301, A307,
	G308
Петля 6-7	N312, P313 , V317, P318 , A320 , V325
TM7	Y332 , S335 , I339, P344
Петля 7-8	V357, S358, S360, P361, F362, A365
TM8	1377
Петля 8-9	L409, P411, R416, K419
TM9	G421, P423
Петля 9-10	S442, K447, F449
TM10	L465
TM11	A503, G515
TM12	A539, L543

Таблица 1. Консервативные аминокислотные остатки

Таблица 2. Аминокислотные остатки, локализованные во внутреннем кольце ТМ-элементов, мутантные замены в которых вызывают инактивацию пермиазы

ТМ-элемент	Аминокислотные остатки
TM1	G94, M95, A97, G99, G100, G103, G104, G105,
	L106
TM3	G170, W174, S176, W177, T180, E184, L185
TM6	T296, Q298, G229, L302, G304, A307
TM8	S388, A389 , S392, N394, I394
TM10	V458, A459, G460 , W464

A

Б

Рисунок 5. Расположение Gly100, Tyr172, Glu301 и Trp464, локализованных около входа в транспортный канал: А) вид сбоку; Б) вид сверху. Молекула канаванина выделена желтым цветом

Список литературы /References:

1. Gao X., Lu F., Zhou L., Dang S., Sun L., Li X., Wang J., Shi Y. Structure and mechanism of an amino acid antiporter. *Science*, 2009, vol. 324, pp. 1565-1568.

2. Gao X., Zhou L., Jiao X., Lu F., Yan C., Zeng X., Wang J., Shi Y. Mechanism of substrate recognition and transport by an amino acid antiporter. *Nature*, 2010, vol. 463, pp. 828-833.

3. Ressl S., Terwisscha van Scheltinga A.C., Vonrhein C., Ott V., Ziegler C. Molecular basis of transport and regulation in the Na+/betaine symporter BetP. *Nature*, 2009, vol. 458, pp. 47-53.

4. Hellsberg E., Ecker G.F., Stary-Weinzinger A., Forrest L.R. A structural model of the human serotonin transporter in an outward-occluded state. *PLOS ONE*, 2019, vol. 14, no. 6, e0217377, doi: 10.1371/journal.pone.0217377.

5. Колтовая Н.А., Душанов Э.Б. Распределение мутаций в молекуле белка дрожжевой аргинин пермиазы CAN1. Актуальные вопросы биологической физики и химии, 2020, т. 5, № 4, с. 644-651. [Koltovaya N.A., Dushanov E.B. Landscape of mutation substitutions in yeast arginine CAN1 permiase. Russian Journal of Biological Physics and Chemistry, 2020, vol. 5, no. 4, pp. 644-651. [In Russ.]]

MUTATIONAL ANALYSIS OF STRUCTURE OF YEAST ARGININE PERMIASE CAN1 Koltovaya N.A., Dushanov E.B.

Joint Institute for Nuclear Research 6 Joliot-Curie St., Dubna, 141980, Russia; e-mail: koltovaya@jinr.ru

Received 25.07.2022. DOI: 10.20930/rusjbpc.2022.0561

Abstract. Currently, the structure and functioning of transmitters, which more than 250 members in different organisms, maintaining pH and osmosis, transport of amino acids and neurotransmitters, such as serotonin, are being intensively studied. This class of proteins is characterized by low nucleotide homology, but a similar structure. Enzymes have a cylindrical shape formed by transmembrane elements consisting of α -helices. Yeast arginine permiase Can1 can serve as a good model for studying the structure and mechanism of transport. The incorporation of arginine is proton pump dependent, thus Can1 catalyzes H+/arginine symport. Inactivation of Can1 leads to resistance to the arginine analogue canavanine. Widespread use of Can1^R-mutation detection system allows selecting among several thousand mutations single missense mutations that inactivate Can1 yeast arginine permiase. At the 3D level, the large mutants are ranked res. 184 out of res. 590 of the enzyme. A stable dynamic model of permiase and charge landscape have been constructed. We selected several crucial amino acid residues, any replacement of which lead to enzyme inactivation. They are increased the list of the most significant amino acid residues involved in the transport of arginine. In the future, it is planned to continue the analysis of selected amino acid residues for a more detailed understanding of the mechanism of substrate transport.

Key words: dynamic model, charge distributions, localization of crucial amino acids.