ТЕОРЕТИЧЕСКОЕ ИССЛЕДОВАНИЕ N¹Н ТАУТОМЕРА КАРНОЗИНА В ЦВИТТЕРИОННОЙ ФОРМЕ

Демухамедова С.Д., Ахвердиева Г.А.

Институт физических проблем, Бакинский государственный университет ул. 3. Халилова 23, г. Баку, AZ-1148, Азербайджан, e-mail: svetlanabest@mail.ru Поступила в редакцию 16.07.2023. DOI: 10.29039/rusjbpc.2023.0603

Аннотация. В представленной работе исследовано пространственное и электронное строение наиболее низкоэнергетической конформации N¹H таутомера карнозина в цвиттерионной форме, имеющего широкий спектр применения. Расчеты проводились квантовохимическим методом DFT на основе гибридного функционала B3LYP и базисного набора 6-31+G(d,p) в газе, воде и в ДМСО с использованием программ Gaussian 09 и GaussView 6.0.16. Вычислены геометрические параметры, значения электронной энергии, дипольные моменты, величины парциальных зарядов на атомах, энергии HOMO и LUMO орбиталей, дескрипторы реакционной способности молекулы и проведен NBO анализ. Визуализированы карты молекулярного электростатического потенциала (MEP) и граничные орбитали, Проанализированы структурные и электронные перестройки в молекуле и изменения различных параметров в зависимости от диэлектрической проницаемости среды. Выявлено, что влияние растворителя не играет существенной роли для данной структуры, получены очень похожие результаты для водной среды и ДМСО. Однако в газовой фазе оптимизация геометрии данного таутомера цвиттериона карнозина привела к отщеплению атома водорода от концевой группы NH₃⁺ и присоединению его к группе COO⁻, фактически преобразовав цвиттерионную форму в нейтральную.

Ключевые слова: цвиттерион карнозина, структура, глобальные дескрипторы реактивности, NBO анализ, ИК спектры.

Карнозин (β-alanyl-L-histidine) - известный дипептид, который синтезируется в организме человека и животных и играет важную функциональную роль. Особенно в больших концентрациях он обнаруживается в тканях мозга и скелетных мышц [1]. Карнозин обладает очень широким спектром биологической активности и терапевтического применения. Он является природным антиоксидантом, защищает клетки и ткани организма от окисления активными формами кислорода и азота [2,3], применяется при лечении воспалительных процессов, протекающих на фоне повреждения клеточных мембран [4-6]. Особенный интерес к этой небольшой молекуле возник в самые последние годы, благодаря ее противовоспалительным и антиоксидантным свойствам, когда на мир обрушилась пандемия коронарируса. Известно, что карнозин способен усиливать иммунитет и защищать организм человека от инфекций, вызываемых различными бактериями, грибами, вирусами, включая коронавирус [7]. При COVID-19 коронавирус использует рецептор ACE2, известный как основное место проникновения вируса SARS-CoV-2 в эпителиальные клетки и клетки легких человека. Предполагается, что назальное введение препарата на основе карнозина направит пептид непосредственно в легкие, ускользнет от внимания сывороточной карнозиназы и ингибирует активность АСЕ2 [8]. Исследования такого рода продолжаются в последних работах [9-12]. Многие свойства карнозина основаны на его способности хелатировать токсичные металлы и нейтрализовывать опасные для здоровья человека молекулы путем химического связывания. Цинковые комплексы L-карнозина (L-CAZ) используются в качестве противоязвенного препарата «Polaprezinc», созданного японскими учеными в 1994 году. Это первое лекарственное средство для перорального применения, в котором цинк играет существенную роль [13]. L-CAZ может оставаться в желудочном соке без быстрой диссоциации и специфически прикрепляться к участку с язвенным поражением, после чего L-карнозин и цинк высвобождаются для заживления язвы, а также проявляют ингибирующее действие на Helicobacter pylori, предотвращая возможное перерождение тканей в злокачественные. При уже достаточном использовании этого препарата никаких побочных действий не наблюдалось. Медикаментозная терапия на базе карнозина и его производных успешно используется для лечения и облегчения течения многих тяжелых болезней, таких как ишемический инсульт [14], сердечные заболевания [15], диабет и его последствия [16-18], почечная недостаточность [19], болезни Паркинсона и Альцгеймера [20-22] и других недугов. Карнозин стали применять в терапии онкологических заболеваний таких как глиобластома головного мозга [23,24], рак желудка [25,26] и колоректальный рак человека [27,28]. Карнозин ингибирует метастазирование клеток [29-31] и уменьшает побочные эффекты от облучения при лучевой терапии [32]. Обнаружено, что карнозин обладает свойствами, замедляющими процесс старения [1,33,34], применяется для профилактики и лечения старческого слабоумия [35], снижает скорость укорочения и повреждений теломеров ДНК плода [36], уменьшает образование атеросклеротических бляшек [37]. В работе [38] исследовали терапевтический потенциал карнозина в качестве противодействия большинству молекулярных изменений возрастного прогрессирующего заболевание глаз, характеризующегося нарушением центрального зрения. Карнозин нетоксичен и препараты на его основе не имеют побочных эффектов. Это подтверждает необходимость всестороннего исследования карнозина и его аналогов с целью создания на их основе новых более совершенных лекарственных средств.

На протяжении последних 15 лет мы изучали строение и свойства нейтрального карнозина в двух таутомерных формах N¹H и N³H и его комплексов с атомами Zn, Cu и Co полуэмпирическим методом квантовой химии PM3 с использованием программного комплекса HyperChem. Квантово-химическим методом теории функционала электронной плотности (DFT) нами была изучена также пространственная и электронная структура нейтральной молекулы карнозина в таутомерной форме N³H в газовой фазе и в водной среде [39]. Однако известно, что биологически активные молекулы фукционируют в физиологической среде их обитания - водном растворе. Поэтому в природе карнозин чаще встречается в форме цвиттериона, тоже электронейтральной молекулы, но имеющей положительно и отрицательно заряженные функциональные группы NH₃⁺ и COO⁻. В нашей недавней работе [40] методом молекулярной механики были изучены конформационные профили, определены энергетические и геометрические параметры, характеризующие стабильные состояния N¹H и N³H таутомеров карнозина в цвиттерионной форме. Было показано, что фрагмент β-аланил более подвижен, чем остальная часть этой молекулы, поэтому он способен изгибать α-аминогруппу (H₃N⁺) в сторону С-концевой карбоксильной группы (СОО-) или имидазольного кольца L-гистидина. Выявлено, что пространственная структура обоих таутомеров молекулы карнозина может быть охарактеризована тремя типами конформаций (I, II, III), которые определяются различным расположением указанных функциональных групп. В конформациях I типа H₃N⁺ группа СОО⁻ группа и имидазольное кольцо L-гистидина близко расположены в пространстве; в конформациях II типа H₃N⁺ группа и COO⁻ группа приближены в пространстве, но имидазольное кольцо L-гистидина отвернуто; в конформациях III типа H₃N⁺ группа и имидазольное кольцо L-гистидина приближены в пространстве, но группа СОО⁻ отвернута. Каждый конформационный тип для обоих таутомеров карнозина включает две характерные конформации, которые определяются одинаковым расположением функциональных групп в пространстве, но отличаются только геометрией β-аланильного фрагмента. Установлено, что наиболее устойчивые состояния данного дипептида характеризуются близким расположением в пространстве αаминогруппы, С-концевой карбоксильной группы и имидазольного кольца L-гистидина. Наблюдается влияние внутримолекулярной водородной связи на геометрию молекулы. В этих конформациях формируются водородные связи двух типов - между ближайшими атомами водорода и кислорода противоположно заряженных N- и С-концевых заряженных групп молекулы; между атомом водорода амидной группы основной цепи аминокислотного остатка L-His и атомами кислорода СОО⁻ группы. Выявлены также солевые мостики между атомом азота α-аминогруппы и атомами кислорода депротонированной карбоксильной группы.

В представленной работе изучены структурные, электронные, спектральные характеристики и определена реакционная способность цвиттериона карнозина с таутомерной формой имидазольного кольца N^1 H, которая встречается в большинстве комплексов карнозина [41]. Расчеты выполнялись квантовохимическим методом теории функционала плотности DFT с использованием трехпараметрического гибридного функционала B3LYP, и расширенного базисного набора 6-31+G(d,p) с учетом поляризационных функций для всех атомов и диффузных функций для неводородных атомов в газовой фазе, а также в наиболее естественной для функционирования пептидных молекул водной среде и в растворителе ДМСО. Нахождение глобального минимума подтверждается отсутствием мнимых частот при решении колебательной задачи. Все вычисления проводились с использованием программы Gaussian 09 [42] и программы визуализатора GaussView 6.0.16 [43].

Рисунок 1. Оптимизированные модели цвиттериона карнозина N¹H в газе (слева), воде (справа) и ДМСО (снизу)

Таблица 🗄	1.	Длины	связей	оптимизированной	молекулы	цвиттериона	карнозина	в	таутомерной
форме N1H	ł								

Связь	газ	вода	ДМСО	[44]	Связь	газ	вода	ДМСО	[44]
N1H2	1,9022	1,0801	1,0814		C15C17	1,547	1,5451	1,5451	1,539
N1H3	1,0178	1,0225	1,0225		C15C18	1,5491	1,5669	1,5669	1,535
N1H4	1,019	1,023	1,0229		C17C21	1,4979	1,4986	1,4986	1,487
N1C5	1,4805	1,5057	1,5056	1,475	C18O22	1,3321	1,2724	1,2726	1,256
C5C8	1,5393	1,5333	1,5333	1,490	C18O23	1,2182	1,2546	1,2543	1,250
C8C11	1,5209	1,5238	1,5239	1,499	C21N24	1,3843	1,3828	1,3828	1,383
C11012	1,2278	1,2378	1,2376	1,233	C21C25	1,3801	1,3792	1,3792	1,356
C11N13	1,3695	1,3562	1,3563	1,334	N24H26	1,0132	1,0157	1,0157	
N13H14	1,0119	1,0126	1,0126		N24C27	1,3657	1,3605	1,3606	1,325
N13C15	1,4494	1,4547	1,4548	1,454	C25N28	1,3788	1,3834	1,3833	1,377
C15H16	1,0962	1,094	1,094		C27N28	1,3182	1,3237	1,3236	1,331

Таблица 2. Валентные углы молекулы цвиттериона карнозина в таутомерной форме N¹H

	газ	вода	ДМСО	Эксп.		газ	вода	ДМСО	Эксп.
H2N1C5	121,666	113,832	113,868		C15C18O22	118,524	118,128	118,128	118,9
N1C5C8	110,672	111,709	111,680	111,0	C15C18O23	120,712	116,314	116,320	116,7
C5C8C11	107,765	109,248	109,228	113,2	O22C18O23	120,755	125,543	125,538	124,5
C8C11O12	121,609	120,867	120,860	121,4	C17C21N24	122,986	122,631	122,615	121,9
C8C11N13	115,312	115,628	115,624	115,7	C17C21C25	132,569	132,823	132,840	128,6
O12C11N133	122,788	123,310	123,318	122,9	N24C21C25	104,441	104,537	104,536	109,5
C11N13C15	122,702	122,448	122,427	123,1	C21N24C27	107,5909	108,0014	107,9971	105,0
N13C15C18	112,192	111,445	111,445	110,4	C21C25N28	111,0926	110,8345	110,8369	106,2
C17C15C18	111,201	113,080	113,056	110,6	N24C27N28	111,7747	111,4938	111,4982	112,1
N13C15C17	112,011	111,425	111,425	107,7	C25N28C27	105,1009	105,1329	105,1313	107,2
C15C17C21	114,101	115,074	115,054	114,1					

Таблица 3. Двугранные углы молекулы цвиттериона карнозина в таутомерной форме N¹H

		ГАЗ	ВОДА	ДМСО	Эксп.
τ1	H2N1C5C8	-44,7736	-55,3283	-55,3428	
τ2	N1C5C8C11	57,912	63,0245	63,0574	-178,7
τ3	C5C8C11N13	-102,5274	-102,0695	-102,0641	130,5
ω	C8C11N13C15	163,6791	157,3024	157,2104	174,8
φ	C11N13C15C18	-99,503	-85,3141	-85,3307	
	C11N13C15C17	134,6101	147,3433	147,3582	141,4
χ1	N13C15C17C21	62,0992	67,7384	67,7895	
χ2	C15C17C21N24	76,0077	71,0974	71,1696	
Ψ	N13C15C18O22	23,5181	17,4344	17,3285	

Оптимизированная структура молекулы цвиттериона карнозина с таутомерной формой N¹H имидазольного кольца для газовой (слева) и водной (справа) сред и растворителя ДМСО (снизу) представлены на рисунке 1. Данная молекула состоит из атомов β-аланильного остатка (N₁, C₅, C₈, C₁₁), пептидной группы C₁₁O₁₂-N₁₃H₁₄, карбоксильной группы C₁₈O₂₂O₂₃ и группы имидазольного кольца (N₂₄, N₂₈, C₂₁, C₂₅, C₂₇).

В таблицах 1-3 приведены оптимизированные геометрические параметры – длины связей (табл. 1) в Å, валентные (табл. 2) и двугранные углы (табл. 3) в градусах наиболее стабильной конформации N¹H таутомера карнозина в различных растворителях и для сравнения экспериментальные данные из работы [44].

Значения длин связей в основном соответствуют стандартным значениям. В газовой фазе в процессе оптимизации данного конформера дипептида за счет взаимодействия протона H_2 α-аминогруппы с кислородом O_{22} карбоксильной группы удлиняется связь N_1H_2 (1,90Å), она разрывается и образуется новая связь $C_{18}O_{22}$, модель становится нейтральной и уже отсутствует взаимодействие между этими группами, связи N_1C_5 и $C_{15}C_{18}$ в газовой фазе по сравнению с их значениями в водной среде и ДМСО укорачиваются на ~ 0.03 и 0.02Å, а связь $C_{11}N_{13}$ удлиняется на 0.01Å. Эти изменения в структуре отражаются также на валентные углы $H_2N_1C_5$, $C_5C_8C_{11}$, $C_8C_{11}O_{12}$, $C_{17}C_{15}C_{18}$, $C_{15}C_{18}O_{23}$ и $O_{22}C_{18}O_{23}$ (табл. 2), двугранные углы (табл. 3) и на нековалентные взаимодействия (табл. 4).

DH ··· A	среда	DH	НА	D·····A	∠DHA
O22H2 … N1	Газ	0,99688	1,90224	2,83850	155,27936
N1H2 ··· O22	Вода	1,08010	1,58506	2,65637	170,515861
	DMSO	1,08140	1,57936	2,65177	170,41005
N24H26 ··· O23	Газ	1,01325	2,27 447	2,97728	125,31226
	Вода	1,01571	2,18854	2,94609	130,00643
	DMSO	1,01574	2,18701	2,94462	130,00388
O22H2 … N13	Газ	0,99683	2,34337	3,77153	118,95433
N1H2 … N13	Вода	1,08010	2,69011	3,28472	114,24279
	DMSO	1,08140	2,68858	3,28376	114,21697
C15H16 O12	Газ	1,09617	2,35768	2,83079	104,03050
	Вода	1,09401	2,43732	2,84414	100,28006
	DMSO	1,09400	2,43691	2,84410	100,30245

Таблица 4. Нековалентные взаимодействия молекулы цвиттериона карнозина N¹H

Таблица 5. Выбранные энергии возмущения второго порядка матрицы Фока и заселенности молекулы карнозина N¹H в цвиттерионной форме в воде, в газе средах и в DMSO

среда	Donor (i)	Туре	ED (i)	Acceptor (j)	Туре	ED (j)	E (2)	E(j)-E(i)	F(i,j)
Газ	N1	n (1)	1,91218	H2-O22	σ*	0,06789	22,67	0,77	0,119
вода	O22	n(2)	1,85656	N1-H2	σ*	0,09945	41,03	0,76	0,159
ДМСО			1,85555		σ*	0,10093	42,05	0,76	0,161
Газ	O22	n(2)	1,78298	C18-O23	π*	0,22576	47,53	0,35	0,115
вода			1,63595		π*	0,34645	89,24	0,29	0,144
ДМСО			1,63680		π*	0,34571	89,00	0,29	0,144
газ	O 23	n(1)	1,97512	N24-H26	σ*	0,02235	1,17	1,15	0,033
вода			1,97345		σ*	0,02661	1,57	1,15	0,038
ДМСО			1,97341		σ*	0,02666	1,58	1,15	0,038
Газ	N 13	n(1)	1,70651	C11-O12	σ*	0,04895	3,19	0,78	0,048
вода			1,66714		π*	0,31309	65,60	0,27	0,120
ДМСО			1,66751		π*	0,31280	65,64	0,27	0,120
Газ	N13	n(1)	1,70651	H2-O22	σ*	0,06789	1,31	0,69	0,029
Газ	N13	n(1)	1,70651	C17-H19	σ*	0,01384	0,51	0,71	0,018
Газ	012	n (2)	1,86355	C11-N13	σ*	0,07810	25,71	0,71	0,122
Вода			1,87805		σ*	0,07249	23,84	0,74	0,120
ДМСО			1,87779		σ*	0,07261	23,88	0,74	0,120
газ	012	n (2)	1,86355	C15-H16	σ*	0,02011	1,00	0,69	0,024
вода		n (2)	1,87805		σ*	0,01773	0,67	0,71	0,020
ДМСО		n(2)	1,87779		σ*	0,01772	0,68	0,71	0,020
газ	012	n (2)	1,86355	C8-C11	σ*	0,06086	19,63	0,62	0,100
вода			1,87805		σ*	0,05869	18,40	0,62	0,097
ДМСО			1,87779		σ*	0,05881	18,44	0,62	0,097
Газ	N24	n(1)	1,56603	C27-N28	π*	0,37292	47,40	0,27	0,103
Вода			1,55125		π*	0,39644	52,71	0,26	0,106
ДМСО			1,55128		π*	0,39623	52,67	0,26	0,106
Газ		n(1)	1,56603	C21-C25	π*	0,32503	34,19	0,29	0,092
Вода			1,55125		π*	0,31653	34,73	0,29	0,093
ДМСО			1,55128		π*	0,31670	34,74	0,29	0,093
газ	C27-N28	π*	0,37292	C21-C25	π*	0,32503	80,28	0,02	0,060
Вода		π*	0,39644	C21-C25	π*	0,31653	49,81	0,03	0,058
ДМСО		π*	0,39623	C21C25	π*	0.31670	50,06	0.03	0,058

E(2) – энергия гиперсопряженных взаимодействий (энергия стабилизации в ккал/моль)

ED (i) – заселенности орбиталей электронами (в ед.электрона)

E(j)-E(i) – разность энергий (a.u.) донорной (i) и акцепторной (j) NBO-орбиталей

F(i,j) – матричные элементы Фока (a.e.) между і и ј NBO орбиталями

Стабилизации молекул способствуют нековалентные внутримолекулярные взаимодействия несвязанных атомов водорода с кислородами и азотами. Как видно из результатов, представленных в таблице 4 в воде и в ДМСО наблюдается формирование солевых мостиков между атомом азота α-аминогруппы и атомом кислорода депротонированной карбоксильной группы длиной 2,66 и 2,65 Å, соответственно. Данный процесс

	Зар	яд Маллик	ена	Заряд НБО			
атом	Газ	Вода	ДМСО	Газ	Вода	ДМСО	
N1	-0,754538	-0,675004	-0,676693	-0,95811	-0,84729	-0,84775	
H2	0,453757	0,491546	0,492695	0,53497	0,49920	0,49934	
H3	0,319449	0,401805	0,401361	0,42364	0,48585	0,48549	
H4	0,314858	0,407900	0,407159	0,41040	0,47835	0,47772	
C5	-0,251143	-0,178703	-0,178222	-0,28265	-0,27892	-0,27901	
H6	0,181439	0,208454	0,208678	0,25912	0,27594	0,27610	
H7	0,142058	0,200840	0,200248	0,22915	0,27879	0,27834	
C8	-0,181927	-0,162050	-0,162394	-0,55340	-0,56617	-0,56609	
H9	0,137544	0,178742	0,178085	0,23958	0,26787	0,26736	
H10	0,178979	0,199258	0,199253	0,28003	0,29470	0,29470	
C11	0,428049	0,288421	0,287738	0,68343	0,68040	0,68017	
012	-0,459413	-0,562867	-0,560965	-0,63582	-0,69424	-0,69302	
N13	-0,364307	-0,247671	-0,249020	-0,68554	-0,65609	-0,65634	
H14	0,318431	0,329210	0,328642	0,43947	0,44692	0,44645	
C15	-0,303623	-0,372088	-0,371021	-0,18281	-0,17993	-0,17998	
H16	0,216989	0,192542	0,192800	0,30928	0,29164	0,29185	
C17	-0,506716	-0,434429	-0,434878	-0,50055	-0,50441	-0,50443	
C18	0,399709	0,428931	0,427798	0,81413	0,80098	0,80129	
H19	0,184678	0,181811	0,182010	0,28348	0,28198	0,28213	
H20	0,163055	0,168252	0,168046	0,27392	0,27569	0,27553	
C21	0,159798	0,105547	0,106347	0,06755	0,08406	0,08396	
O22	-0,435365	-0,646935	-0,646261	-0,72620	-0,80463	-0,80456	
O23	-0,461823	-0,626190	-0,624107	-0,63324	-0,78252	-0,78117	
N24	-0,325195	-0,297035	-0,297280	-0,57890	-0,57322	-0,57334	
C25	-0,093644	-0,046639	-0,047193	-0,11365	-0,12215	-0,12226	
H26	0,336363	0,351540	0,351604	0,47121	0,47899	0,47903	
C27	0,230325	0,236029	0,235754	0,16073	0,16018	0,16011	
N28	-0,290588	-0,419511	-0,417839	-0,50104	-0,56066	-0,55995	
H29	0,126201	0,140674	0,140359	0,23881	0,24519	0,24502	
H30	0,136600	0,157618	0,157295	0,23301	0,24350	0,24333	

Габлица 6 Заряль	і Мапликена и НБС) на атомах пвитте	пиона карнозина	в таутомерной	форме	N ¹ H
і аблица о. Заридь		ла атомал цвитте	риона карнозина	Бтаутомерной	ψυρινις.	14 11

сопровождается также образованием водородной связи $N_1H_2 \cdots O_{22}$ длиной 1,59 и 1,58 Å в указанных средах, соответственно. Отметим, что в газовой среде в результате оптимизации происходит отщепление атома водорода от концевой группы NH_3^+ и присоединение его к группе COO^- , что приводит к образованию ковалентной связи (0,997 Å) между атомами H_2 и O_{22} . По этой причине атом азота α-амино группы депротонируется, что говорит об отсутствии солевого мостика между вышеупомянутыми атомами азота и кислорода в газовой фазе. При этом наблюдается заметная деформация углов исследуемой молекулы $\tau 1$ (на 10°), ω (на 7°), ϕ (на 15°), ψ (на 7°) в газовой среде (табл. 3).

Для получения подробной информации о внутримолекулярных взаимодействиях и переносе заряда был проведен анализ орбиталей натуральных связей NBO [46], который подтверждает образование ковалентной связи O₂₂H₂ в газовой фазе (таблица 5, первая строчка). Атом водорода H₂ образует две водородные связи, первая в газе O₂₂H₂…N₁, а в воде и ДМСО O₂₂ N₁H₂ … O₂₂ и вторая с атомом азота пептидной группы N₁₃, в газовой фазе O₂₂H₂ ··· N₁₃ с переносом заряда с неподеленной пары атома N₁₃ на разрыхляющую орбиталь связи H₂O₂₂ n(1)_{N13}→σ*_{H2-O22} с энергией 1,31 ккал/моль, в воде и ДМСО водороная связь N₁H₂…N₁₃ соответствует переносу заряда *n*(1)_{N13}→σ*_{N1-H2} с энергией 0,10 ккал/моль. В воде и в ДМСО образуется шестичленный цикл N₁₃O₁₁C₈C₅N₁H₂, в котором происходит делокализация электронной плотности n_{N13}→π*_{C11-O12} с энергией делокализации 65,6 ккал/моль, в газовой фазе образуется семичленный цикл N13O11C8C5N1H2O22 и соответствующая энергия 3,19 ккал/моль. Образование водородных связей C₁₅H₁₆ ··· O₁₂ и N₂₄H₂₆ ··· O₂₃ подтверждено НБО анализом: $n(2)_{012} \rightarrow \sigma^*_{C15H16}$ с энергией стабилизации в газе, воде и ДМСО 1,00, 0,67 и 0,68 ккал/моль и n(1)₀₂₃→σ*_{N24H26} с энергией 1,17, 1,57 и 1,58 соответственно. Сильное взаимодействие с переносом заряда наблюдается с неподеленной пары О₁₂ на разрыхляющую σ* орбиталь связи C₁₁N₁₃ n₀₁₂→σ*_{C11-N13} с энергией 25,71 в газе и 23,84 и 23,88ккал/моль в воде и ДМСО. Внутри имидазольного кольца наблюдаются сильные делокализации с переносом заряда с π и π* на σ* и π* орбитали связей внутри кольца.

Параметры		Газ	Вода	ДМСО
Электронная энергия		-21664,670558	-21665,478546	-21665,457756
НОМО		-6,416176	-6,352501	-6,350052
LUMO		-0,748041	-0,397559	-0,406810
Энергетическая щель ΔЕ		5,668134	5,954942	5,943242
Потенциал ионизации (I)	$I = -E_{HOMO}$.	6,416176	6,352501	6,350052
Сродство к электрону (А)	$A = -E_{LUMO}$	0,748041	0,397558	0,406810
Электроотрицательность (χ)	$\chi = (I + A)/2$	3,582109	3,375030	3,378431
Химический потенциал (µ)	$\mu = - (I+A)/2$	-3,582109	-3,3750298	-3,378431
Твердость (η)	$\eta = (I-A)/2$	2,834067	2,977471	2,971621
Мягкость (S)	$S = 1/2\eta$	130,635614	124,343807	124,588615
Индекс электрофильности (ω)	$\omega = \mu^2/2\eta$	2,263798	1,912825	1,920472
Нуклеофильность (v)	$v = 1/\omega$	327,087846	387,109525	385,562639
Максимальный перенос заряда (ΔN) $\Delta N = - \mu/\eta$	34,393739	30,844719	30,936585
Поляризуемость (α)		3887,469931	5180,596701	5157,310111
Дипольный момент (Debay)		4,878727	14,166919	14,076730

Таблица 7. Энергетические параметры наиболее стабильной конформации цвиттериона карнозина таутомерной формы N¹H в различных средах (DFT/B3LYP/6-31+G(d,p)) (в eV)

В таблице 6 даны полученные в процессе расчета заряды Малликена, удобные для качественной оценки и заряды НБО, отражающие более разумное распределение зарядов на атомах цвиттериона карнозина в таутомерной форме N¹H в рассмотренных средах. Естественные заряды дают более отрицательные значения на атомах азотов, кислородов и углеродов с отрицательным зарядом, исключение составляет заряд на C_{15} . Положительный заряд наблюдается на атомах углерода карбоксильной группы C_{18} и имидазольного кольца C_{21} и C_{27} .

В таблице 7 приведены энергетические и электронные характеристики цвиттериона карнозина с N¹H формой имидазольного кольца, полученные в результате расчета. Это значения энергий, дипольного момента, поляризуемости. Отрицательный знак энергии LUMO орбитали во всех средах говорит о электрофильном характере дипептида. В водной среде и ДМСО электронная энергия цвиттериона карнозина понижается на 0,808 и 0,786 eV соответственно, а значения энергетической щели на 0,287 и 0,275 eV увеличивается. Следовательно, в водной среде и ДМСО данный конформер цвиттериона карнозина более стабилен. На основе энергий пограничных орбиталей – НОМО (высшая занятая молекулярная орбиталь) и LUMO (низшая вакантная молекулярная орбиталь) вычислены глобальные дескрипторы, по которым можно изучить химические свойства цвиттериона карнозина. Согласно теореме Купманса [48] первая энергия иоизации равна отрицательному

Рисунок 2. Картины и энергии НОМО – LUMO орбиталей и их разность для цвиттериона карнозина в таутомерной форме N¹H для газовой фазы (слева), водной среды (в середине) и в растворителе ДМСО (справа)

Рисунок 3. МЕР молекулы цвиттериона карнозина в таутомерной форме N¹H для газовой фазы (слева), водной среды (в середине) и в растворителе ДМСО (справа)

значению НОМО орбитали, а отрицательное значение LUMO орбитали соответствует сродству к электрону. Потенциал ионизации и сродство к электрону в водной среде уменьшаются соответственно на 0,064 и 0,350 eV, а в ДМСО еще на 0,002 и 0,009 eV. В этих средах (таблица 7) уменьшаются также мягкость (на 6,292 и 6,047 eV), электрофильность (на 0,35 и 0,34 eV) и максимальный перенос заряда (на 3,55 и 3,46 eV). Поляризуемость в растворителе, особенно в воде увеличивается (на 1293,127 и 1269,84 eV), что говорит о увеличении химической активности. Дипольный момент также значительно увеличивается в воде на 9,288 и в ДМСО на 9,198 eV, цвиттерион в растворителях обладает большей реакционной способностью.

На рисунке 2 показаны визуализированные пограничные НОМО и LUMO орбитали, их энергии и значения энергетической щели цвиттериона карнозина в таутомерной форме N¹H для газовой и водной сред и растворителя ДМСО, рассчитанные на том же уровне теории. Рассмотрим области молекулярных орбиталей, где между ними

Рисунок 4. Теоретические ИК- спектры цвиттерионной молекулы карнозина в таутомерной форме N¹H для газовой (сверху), водной (в середине) и ДМСО (снизу) сред, полученные методом DFT/6-31+G(d,p)

произошли электронные переходы. Красный цвет на рисунке указывает на присутствие электронов (отрицательный заряд), а зеленый - на отсутствие электронов (положительный заряд).

Во всех средах на НОМО орбиталях данного конформера цвиттериона карнозина загруженным оказывается гистидиновый остаток, причем в основном оккупированными оказываются имидазольное кольцо и примыкающая к нему CH_2 группа, а также небольшая электронная плотность располагается на атомах пептидной группы и над связью $C_{15}C_{18}$. В водной среде и в ДМСО загруженность наблюдается и на атомах кислорода карбоксильной группы. При переходе с НОМО на LUMO орбиталь полностью освобождается имидазольное кольцо гистидина и ближайшая к нему CH_2 группа, а электронная плотность переходит на β -аланиновый остаток карнозина: полностью загруженными оказывается атомы N_1 , H_3 и H_4 со стороны N конца дипептида, следующие две группы CH_2 и атомы пептидной группы. В растворителях загруженность пептидной группы LUMO орбитали увеличивается. Как видим, переходы электронной плотности носят схожий характер для HOMO и LUMO орбиталей в разных средах. Однако имеется существенное различие в окраске этих орбиталей в газовой фазе и в растворителях: расположенные в одних и тех же областях молекулы HOMO и LUMO орбитали при переходе от газа к растворителям меняет красный цвет на зеленый и наоборот. В обоих растворителях картинки орбиталей имеют одинаковый вид.

На рисунке 3 представлены карты молекулярного электростатического потенциала (МЕР) цвиттериона карнозина в таутомерной форме N¹H, рассчитанные методом DFT/B3LYP/6-31+G(d,p) в газе, воде и ДМСО. Они имеют аналогичный вид, активными центрами реактивности цвиттериона карнозина во всех средах являются атомы кислорода пептидной и карбоксильной групп, а также атом азота N-конца дипептида. Однако в газовой среде, ввиду отщепления в процессе оптимизации атома водорода от концевой группы NH_3^+ и присоединения его к группе СОО⁻, цвет между атомами O_{22} и H_2 становится зеленым, реактивность этого участка в газовой фазе исчезает, что подтверждает образование ковалентной связи.

На рисунке 4 приведены рассчитанные на том же уровне теории теоретические ИК спектры для газовой (сверху), водной (в середине) и ДМСО (снизу) сред цвиттериона карнозина в таутомерной форме N¹H. Видим, что в воде и ДМСО спектры имеют очень похожий вид, а спектр в газовой фазе значительно отличается. Наиболее интенсивной полосой в растворителях является полоса в области 2500 см⁻¹, а в газовой среде наиболее интенсивна полоса 3254 см⁻¹. Аннимация этих полос показывает, что обе частоты соответствуют колебаниям атома водорода H₂ N-конца дипептида. В газовой фазе в колебании счастотой 3254 см⁻¹ принимает также участие атом кислорода O₂₂ карбоксильной группы.

Полученные результаты могут оказаться полезными в процессе поиска новых нетоксичных лекарственных препаратов.

Список литературы / References:

1. Boldyrev A.A., Aldini G., Derave W. Physiology and pathophysiology of carnosine. *Physiol Rev.*, 2013, vol. 93, pp. 1803-1845, doi: 10.1152/physrev.00039.2012.

2. Болдырев А.А. Проблемы и перспективы исследования биологической роли карнозина. *Биохимия*, 2000, т. 65, № 7, с. 884-890 [Boldyrev A.A. Problems and prospects of research of the biological role of carnosine. *Biokhimiya*, 2000, vol. 65, no. 7, pp. 884-890 (In Russ.)].

3. Hipkiss A.R. Chapter 3: Carnosine and Its Possible Roles in Nutrition and Health. Advances in Food and Nutrition Research., 2009, vol. 57, pp. 87-154, doi: 10.1016 / S1043-4526 (09) 57003-9.

4. Gallant S., Kukley M., Stvolinsky S., Bulygina E., Boldyrev A. Effect of carnosine on rats under experimental brain ischemia. *Tohoku J. Exp. Med.*, 2000, vol. 191, pp. 85-99, doi: 10.1620/tjem.191.85.

5. Prokopieva V.D., Yarygina E.G., Bokhan N.A., Ivanova S.A. Use of carnosine for oxidative stress reduction in different pathologies. *Oxid Med Cell Longev.*, 2016, no. 29390872016, doi: 10.1155/2016/2939087.

6. Caruso G., Fresta C.G. et al. Carnosine prevents Aβ-induced oxidative stress and inflammation in microglial cells: A key role of TGF-β1. *Cells*, 2019, vol. 8, no. 1, pp. 64-86, doi: 10.3390/cells8010064.

7. Wu G. Important roles of dietary taurine, creatine, carnosine, anserine and 4-hydroxyproline in human nutrition and health. *Amino Acids*, 2020, vol. 52, no. 3, pp. 329-360, doi: 10.1007/s00726-020-02823-6.

8. Hipkiss A.R. COVID-19 and Senotherapeutics: Any Role for the Naturally-occurring Dipeptide Carnosine? *Aging Dis.*, 2020, vol.11, no. 4, pp. 737-741, doi: 10.14336/AD.2020.0518.

9. Saadah L.M., Deiab G.I.A., Al-Balas Q., Basheti I.A. Carnosine to Combat Novel Coronavirus (nCoV): Molecular Docking and Modeling to Cocrystallized Host Angiotensin-Converting Enzyme 2 (ACE2) and Viral Spike Protein. *Molecules*, 2020, vol. 25, no. 23, pp. 5605-5619, doi: 10.3390/molecules25235605.

10. Diniz F.C., Hipkiss A.R., Ferreira G.C. The Potential Use of Carnosine in Diabetes and Other Afflictions Reported in Long COVID Patients. *Front Neurosci.*, 2022, vol. 16, p. 898735, doi: 10.3389/fnins.2022.898735.

11. Bennet S., Kaufmann M. et al. Small-molecule metabolome identifies potential therapeutic targets against COVID-19. *Sci Rep.*, 2022, vol. 12, no. 1, p. 10029, doi: 10.1038/s41598-022-14050-y.

12. Caruso G. Unveiling the Hidden Therapeutic Potential of Carnosine, a Molecule with a Multimodal Mechanism of Action: A Position Paper. *Molecules*, 2022, vol. 27, no. 10, p. 3303, doi: 10.3390/molecules27103303.

13. Matsukura T., Tanaka H. Applicability of Zinc Complex of L-Carnosine for Medical Use. *Biochemistry* (Mosc.), 2000, vol. 65, no. 7, pp. 817-823.

14. Jain S., Kim E.S. et al. Comparative cerebroprotective potential of d- and l-carnosine following ischemic stroke in mice. *Int. J. Mol. Sci.*, 2020, vol. 21, no. 9, pp. 3053-3065, doi: 10.3390/ijms21093053.

15. Zhao J., Posa D.K. et al. Carnosine protects cardiac myocytes against lipid peroxidation products. *Amino Acids*, 2019, vol. 51, no. 1, pp. 123-138, doi: 10.1007/s00726-018-2676-6.

16. Petersmann A., Müller-Wieland D. et al. Definition, Classification and Diagnosis of Diabetes Mellitus. *Exp. Clin. Endocrinol. Diabetes.*, 2019, vol. 127, iss. S01, pp. S1-S7, doi: 10.1055/a-1018-9078.

17. Riedl E., Pfister F. et al. Carnosine prevents apoptosis of glomerular cells and podocyte loss in STZ diabetic rats. *Cell Physiol Biochem.*, 2011, vol. 28 no 2, pp. 279-288, doi: 10.1159/000331740.

18. Peters V., Zschocke J., Schmitt C.P. Carnosinase, diabetes mellitus and the potential relevance of carnosinase deficiency. *J Inherit Metab Dis.*, 2018, vol. 41, no. 1, pp. 39-47, doi: 10.1007/s10545-017-0099-2.

19. Kiliś-Pstrusińska K. Carnosine, carnosinase and kidney diseases. Postepy Hig Med Dosw, 2012, vol. 66, pp. 215-221.

20. Zhao J., Shi L., Zhang L.-R. Neuroprotective effect of carnosine against salsolinol-induced Parkinson's disease. *Exp. Ther. Med.*, 2017, vol. 14, no. 1, pp. 664-670, doi: 10.3892/etm.2017.4571.

21. Calon F., Cole G. Neuroprotective action of omega-3 polyunsaturated fatty acids against neurodegenerative diseases: evidence from animal studies. *Prostaglandins Leukot Essent Fatty Acids*, 2007, vol. 77, no. 5-6, pp. 287-293, doi: 10.1016/j.plefa.2007.10.019.

22. Bermúdez M L., Seroogy K.B., Genter M.B. Evaluation of carnosine intervention in the Thy1-aSyn mouse model of Parkinson's disease. *Neuroscience*, 2019, vol. 411, pp. 270-278, doi: 10.1016/j.neuroscience.2019.05.026.

23. Gaunitz F., Hipkiss A.R. Carnosine and cancer: a perspective. *Amino Acids*, 2012, vol. 43, no. 1, pp. 135-142, doi: 10.1007/s00726-012-1271-5.

24. Oppermann H., Faust H., Yamanishi U., Meixensberger J., Gaunitz F. Carnosine inhibits glioblastoma growth independent from PI3K/Akt/mTOR signaling. *PLoS ONE*, 2019, vol. 14, no. 6, e0218972, doi: 10.1371/journal.pone.0218972.

25. Shen Y., Yang J., Li J., Shi X., Ouyang L., Tian Y., Lu J. Carnosine inhibits the proliferation of human gastric cancer SGC-7901 cells through both of the mitochondrial respiration and glycolysis pathways. *PLoS ONE*, 2014, vol. 9, no. 8, e104632, doi: 10.1371/journal.pone.0104632.

26. Zhang Z., Miao L., Wu X., Liu G., Peng Y., Xin X., Jiao B., Kong X. Carnosine inhibits the proliferation of human gastric carcinoma cells by retarding Akt/mTOR/p70S6K signaling. *J. Cancer.*, 2014, vol. 5, pp. 382-389. doi: 10.7150/jca.8024.

27. Lee J., Park J.R., Lee H., Jang S., Ryu S.M., Kim H., Kim D., Jang A., Yang S.R. L-carnosine induces apoptosis/cell cycle arrest via suppression of NF-κB/STAT1 pathway in HCT116 colorectal cancer cells. *In Vitro Cell Dev Biol Anim.*, 2018, vol. 54, pp. 505-512, doi: 10.1007/s11626-018-0264-4.

28. Hsieh S.-L., Li J.-H., Dong C.-D., Chen C.-W., Wu C.-C. Carnosine suppresses human colorectal cancer cell proliferation by inducing necroptosis and autophagy and reducing angiogenesis. *Oncol Lett.*, 2022, vol. 23 no. 2, p. 44, doi: 10.3892/ol.2021.13162.

29. Chuang C.-H., Hu M.-L. L-Carnosine Inhibits Metastasis of SK-Hep-1 Cells by Inhibition of Matrix Metaoproteinase-9 Expression and Induction of an Antimetastatic Gene, nm23-H1. *Nutr Cancer*, 2008, vol. 60, no. 4, pp. 526-533, doi: 10.1080/01635580801911787.

30. Hsieh S.-L., Hsieh S., Lai P.-Y., Wang J.-J., Li C.-C., Wu C.-C. Carnosine suppresses human colorectal cell migration and intravasation by regulating EMT and MMP expression. *Am J Chin Med*, 2019, vol. 47, no. 2, pp. 477-494, doi: 10.1142/s0192415x19500241.

31. Wu C.-C, Lai P.-Y, Hsieh S., Cheng C.-C., Hsieh S.-L. Suppression of carnosine on adhesion and extravasation of human colorectal cancer cells. *Anticancer Res.*, 2019, vol. 39, no. 11, pp. 6135-6144, doi: 10.21873/anticanres.13821.

32. Rybakova Y. S., Boldyrev A. A., Effect of Carnosine and Related Compounds on Proliferation of Cultured Rat Pheochromocytoma PC-12 Cells. *Bull. Exp. Biol. Med.*, 2012, vol. 154, no. 1, pp. 136-140, doi: 10.1007/s10517-012-1894-2.

33. Hipkiss A.R., Baye E., de Courten B. Carnosine and the processes of ageing. *Maturitas*, 2016, vol. 93, pp. 28-33, doi: 10.1016/j.maturitas.2016.06.002.

34. Cararo J.H., Streck E.L., Schuck P.F., da C. Ferreira G. Carnosine and Related Peptides: Therapeutic Potential in Age-Related Disorders. *Aging and Disease*, 2015, vol. 6, no. 5, pp. 369-379, doi: 10.14336/AD.2015.0616.

35. Kawahara M., Tanaka K.-I., Kato-Negishi M. Zinc, Carnosine, and Neurodegenerative Diseases. *Nutrients*, 2018, vol. 10, no. 2, pp. 147-167, doi: 10.3390/nu10020147.

36. Shao L., Li Q., Tan Z. L-Carnosine reduces telomere damage and shortening rate in cultured normal fibroblasts. *Biochemical and Biophysical Research Communications*, 2004, vol. 324, no. 2, pp. 931-936, doi: 10.1016/j.bbrc.2004.09.136.

37. Rashid I., van Reyk D.M., Davies M.J. Carnosine and its constituents inhibit glycation of low-density lipoproteins that promotes foam cell formation in vitro. *FEBS Lett.*, 2007, vol. 581 no. 5, pp. 1067-1070, doi: 10.1016/j.febslet.2007.01.082.

38. Caruso G., Fresta C.G. et al. Carnosine Counteracts the Molecular Alterations Aβ Oligomers-Induced in Human Retinal Pigment Epithelial Cells. *Molecules*, 2023, vo. 28, pp. 3324-3338, doi: 10.3390/molecules28083324.

39. Демухамедова С.Д. Теоретическое квантово-химическое моделирование структуры и свойств дипептида карнозина методом DFT. Актуальные вопросы биологической физики и химии, 2022, т. 7, № 2, с. 241-250, doi: 10.29039/rusjbpc.2022.0509 [Demukhamedova S.D. Theoretical quantum-chemical simulation of the structure and

properties of carnosine dipeptide by the DFT method. *Russian journal of biological physics and chemistry*, 2022, vol. 7, no 2, pp. 241-250 (In Russ.)].

40. Akverdieva G.A., Alieva I.N., Hajiyev Z.I., Demukhamedova S.D. Spatial structure of N¹H and N³H tautomers of carnosine in zwitterion form. *AJP Fizika*, 2021, vol. XXVII, no. 2, section: En, 2021, pp. 29-37.

41. Baran E.J. Metal complexes of carmnosine. Biochemistry, 2000, vol. 65, no.7, pp. 789-797.

42. Frisch M.J. et al. Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2013.

43. Dennington R., Keith T., Millam J. Gauss View, Version 6.0.16. Shawnee, Kansas: Semichem Inc., Shawnee Mission, 2016.

44. Itoh H., Yamane T., Ashida T. Carnosine (β-Alanyl-L-histidine). *Acta Cryst.*, 1977, vol. B33, pp. 2959-2961, doi: 10.1107/S0567740877009972.

45. Koopmans T. Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. *Physica*, 1934, vol. 1, no. 1-6, pp. 104-113, doi: 10.1016/s0031-8914(34)90011-2.

46. Weinhold F., Landis C.R. Valency and Bonding: A Natural Bond Orbital Donor-Acceptor Perspective. Cambridge University Press, 2005.

THEORETICAL STUDY OF THE CARNOSINE N¹H TAUTOMER IN THE ZWITTERIONIC FORM Demukhamedova S.D., Akverdieva G.A.

Institute for Physical Problems, Baku State University Z. Khalilov st.23, Baku, AZ-1148, Azerbaijan, e-mail: svetlanabest@mail.ru Received 16.07.2023. DOI: 10.29039/rusjbpc.2023.0603

Abstract. In the present work, the spatial and electronic structures of the lowest energy conformation of the carnosine N¹H tautomer in the zwitterionic form, which has a wide range of applications, have been studied. The calculations were performed by the DFT quantum-chemical method based on the B3LYP hybrid functional and the 6-31+G(d,p) basis set in gas, water, and DMSO using the Gaussian 09 and GaussView 6.0.16 programs. The geometry parameters, values of electronic energy, dipole moments, values of partial charges on atoms, HOMO and LUMO energies, descriptors of reactivity of a molecule were calculated and NBO analysis is carried out. The molecular electrostatic potential (MEP) maps and frontier orbitals were visualized. The structural and electronic rearrangements in the molecule and changes in various parameters depending on the dielectric constant of the medium were analyzed. It was found that the influence of the solvent does not play a significant role for this structure, very similar results were obtained for the aqueous medium and DMSO. However, the optimization of the geometry of this carnosine zwitterion tautomer in the gas phase, led to the elimination of the hydrogen atom from the terminal NH₃⁺ group and its addition to the COO⁻ group, actually converting the zwitterionic form into a neutral one. *Key words: carnosine zwitterion, structure, global reactivity descriptors, NBO analysis, IR spectra.*