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1. Introduction

In 1888 H. Hertz have obtained the solution to the problem of a point
electric dipole, and a decade later (in 1897) H. Pocklington published an article
on the integral equation (IE) of a thin electric linear vibrator (LV) [1]. From this
moment the countdown in the development of antenna theory and technology
began. Further, other forms of IEs for the vibratory antenna (VA) were obtained
by E. Hallen [2], then M. Leontovich and M. Levin [3], then L. Vainshtein,
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P. Kapitsa and V. Fok [4, 5], L. Vainshtein [6—10], L. Vainshtein and V. Fok
[11]. In a number of recent works [12—18] new modifications of the Pocklington
IE are proposed, including those having the form of Fredholm IEs of the second
kind, as well as those recorded with respect to the magnetic field [18]. These IEs
have different forms than the original Pocklington equation (PE). The PE itself
can be considered first as 1*-order Fredholm IE with an exact singular kernel,
and second as a similar IE with an approximate continuous kernel. Thus, all
transformations of the PE of thin LV boil down to how the integral operator can
be transformed. For a number of years, the interest has been aroused by strip,
microstrip and other planar antennas [19], which are similar in principle to wire
VAs. Recently, there has been interest in THz, IR and even optical band anten-
nas, structurally made in the form of carbon nanotubes (CNTs), graphene strips
and other nanostructures. CNT and graphene have surface conductivity ¢ and
can even be active (under optical pumping) [20]. They are promising for the
transmission of THz and IR radiation at short distances. The final complex im-
pedance requires an impedance approach to the formulation of the problem and
can significantly change the properties of such antennas due to the occurrence of
plasmons and other effects [21]. In a strict solution, all forms of equations (with
the same formulation of the problem) should give the same results, but have dif-
ferent convergence and require different computational resources and methods
of solution, which is the subject of this work. It is interesting to trace the meth-
ods of transformation of [Es and their impact on obtaining solutions. In addition,
the paper considers Vas in the form of CNT and graphene strips, which are of
interest for the transmission of THz and IR energy in microstructures and over
short distances. Since the IE in the simplest architecture is a one-dimensional
(1D), the methods of its transformation are clearer and simpler than for 2D and
3D IEs, which is why its consideration in the work is due. Often IE is under-
stood not as an integral one with a smooth kernel, but as a singular IE (SIE). In
this paper, modifications of IE and integrodifferential equations (IDEs), as well
as one-dimensional SIE and singular IDE (SIDE) for an electrically thin and
thick LV are obtained from PE of even from volume IE. Their connection with
the PE (1897) and the Hallen equation (1938) is shown. LAs with impedance
CNT and graphene nanoribbon are considered (see for compare [21-30]).

2. Problem statement

LV Fig. 1 since Pocklington, who based his work on the Hertz approach
[31], is a classical object of IE theory. Usually the problem is considered in a
simplified formulation: the cylinder is considered complete and perfectly con-
ductive without end surfaces, and its excitation is carried out by a point voltage
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source through an infinitesimal gap. As seen in Fig. 1, in the technical imple-
mentation, it also includes two conductive cylinders 1 of radius a, usually pow-
ered from a shielded source 2 by a feeder 3. The feeder does not radiate, be-
cause the two wires of the last close, and the currents in them are antiphase.
Therefore, only the currents flowing over the surface of the cylinders and the
gap are radiating. The model for the gap has a very strong influence on the cal-
culation of the input impedance, as well as the ends in the case of a thick VA.
Usually the cylinders are considered perfectly conductive, and the current is
superficial. Recently, there have been works taking into account the finite sur-
face impedance, for example, [21-29]. Its accounting is important, for example,
for the analysis of terahertz antennas based on CNT. For such bands, metal
nanowires (quantum threads) can be used as LV. Their conductivity is quan-
tized and the field penetrates deep, requiring the use of volume integral equa-
tions. Usually for theoretical research consider the simplest symmetrical LV.
Asymmetry is not particularly difficult. Consideration of a thin VA in the form
of a curved wire is convenient on the basis of the Hallen equation and leads to
complication of the kernel of the integral operator. Another approximation is a
hollow LV. In this case, the equations are quite simplified, since the end cur-
rents are not taken into account (Fig. 1). Another strong approximation is a thin
VA. Usually the approximation a/A <<1 is used: the smallness of the radius
in relation to the wavelength. However, the ratio a/[ characterizing the elon-
gation of the cylinder is also important. The strongest approximation associated
with the fineness of the VA is the azimuthal independence of the current densi-
ty, i.e. the one-dimensionality of the IE. And although a number of publications
have obtained results suitable for a/ A ~ 1, the condition a// ~1 requires tak-
ing into account many azimuthal harmonics. It is connected, in particular, with
asymmetry of excitation by feeder and external field (incident plane wave),
with neighboring VA, etc. With symmetric feeding of a single VA without in-
cident field, the density of the longitudinal current J_ (p,z) =1, (2)5 (a - p) on
the side surface depends only on the longitudinal coordinate z, and at the ends

there is only a radial component J p(p,z). At the ends

I (p2)=n.,(p)o(zF A12) and J,(p,2)=1"s(p)5(2F (1 + A72)). Here 7.(2),
7., (p) and 7° p(p) is the surface current density. Another significant approx-

imation is the narrow gap A <</ . It is due to the fact that usually the current
density J_ =10 (z) o ( p) in the gap is replaced by, which means continuity .J..
On the other hand, an electric field is excited in the gap £, ~ U05(z), which is
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Fig. 1. Schematic view of LV: cylinders with ends 1, generator,
feeder 2. Arrows show currents.

Puc. 1. CxemaTndeckoe n300pakeHNe JIMHEHHOTO BUOpaTopa:
LUJIMHAPBI ¢ KOHI[aMu 1, rerepatop, ¢umep 2.
CrpenkaMu 1oKa3aHbl TOKH

proportional to the bulk density of the displacement electric current
J, =iwe,U, 05(2). For a thin VA with a small gap, the conduction current pass-

es into the bias current, so one-dimensional IE can be used in the region
—1 <z <[.Forawide gap, this is not possible: the bias current extends beyond
the cylinder —/ <z <[, p<a, so a strict approach should include excitation

by surface side and end currents. In addition, it is necessary to take into account
two linear currents suitable for the points of power supply. They can be taken
on the axes of these wires. Boundary conditions must be imposed on the entire
surface of both cylinders and on the side surface of the supply wires. This is a
strict statement of the problem. It allows you to determine the component £, on

the surface of the gap and calculate the average voltage in the gap U . Then the
input impedance of the gap is Z, = U/ I,,. Since the diameter of the feeder

wire 7, < a is small, in this case the approximation of point feeding is quite
justified: J_(p,z)=1,6(r, — p)5(2).

The LV from CNT corresponds to this consideration. Given the problem
of excitation of such a VA, let consider a single radiating CNT excited in the
optical range by laser pumping. The conductivity of CNTs is considered in [31,
33] and for big radius a limits to the graphene one for zigzag and armchair con-
figurations. So we use the graphene conductivity, which has a negative real part
due to the pumping power. In balance, the radiation power coincides with the
pumping power, so the calculation of such antennas is very simple, especially
for CNTs without ends: the power developed on the surface must coincide with
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the power emitted through the remote sphere X:

P= —Re(j)q(r)E* (r)ds/2= —Re¢0'|E(r)|2 ds/2= ReC_'SE(r)xH* (r)ds/2
N S z

At the same time, the density of the surface current m satisfies IE. In general

case of field penetration into the volume of the VA the IE

2
E(r)=E, (1’)+ZoMJG(r—r’)J(r’)dV. (1)
0 14
For magnetic field we have
H(r): Hin(r)+V><IG(r —r')J(r')d3r', 2)
14

These 3D volumetric IEs are suitable for finding the volumetric current density
in the cylinder [34]. They should be used when the radius «a is of the order of the
skin layer o. This is the case for nanowires, or for very high frequencies when
the dielectric constant of the metal is almost real positive and the normal skin
effect is not performed. Also it is the case for ultra-low frequencies when the
penetration depth is great. When 6 << a one can use the surface IE:

k; +VV.-
E(r) =E, (r)+ Z, %J‘ G(l‘ -r] )n(r‘; )dz”’ +2,E, (r)+ poEo, (r), 3)

0 S
2
E, (r): 271, Z,r, G,.. (p,Z | 7’0,0);—(/(0 G, (p,Z | VO,O)’
0
G 4 p’Z | p:O
EOp(r)ZZEIoZo”o Op(i ) 4)
0

If r €S this is 2D surface IE. Here E,,, H,, are initial field, Z, = \/ 1,/ &, is

the impedance, G is the scalar Green’s function (GF), Gy is its the azimuth in-
dependent part, the subscripts correspond to the coordinate derivatives. Note

that on the surface M = ov < E x v = ok _, so taking into account the finite

surface impedance the IE (3) becomes the second kind IE. It is convenient to
use 1D IE instead 2D one, using smallness of a. We have

1 re( T K =2 () Ko (1)
Go(p,z|p,z)=EI \/ — xdy . (5)
0 X K

We will use multiple views of the GF G =(4zR)" exp(—ik,R),
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= |r —r’| = \/(z - z’)2 +p 4+ p" - 2pp’cos(9) , 0=0—¢, in particular

G = Y[G, cos(n6) iF, sin(n0)). ©)
n=0
The azimuth independent part also has the views

G,(p.z|p'.2 ——Icos —ih(z - z))fo( ()p,p')dh, (7

0

1
G,)(p.z|p.Z' —gj.exp K)|Z—z'|)g0(h(K),p,p’)h’l(K)KdK.(8)

Here /=+/k> —k02 , K=+l —kg , and the functions have the following

form  below. If p<p', then f, (K(h),p, p’) =K, (xp')1,(xp),
go(h(lf),p,p') = Ko(hp')lo(hp) If p>p, then
Sil(n).p. p) = 1,0 Ko (), go(hK). p, p')= 1o(hP)K (hp). 1,(2) and
K, (z) mean McDonald’s cylindrical functions of the second kind of complex ar-

gument. We have

G(p>¢’z 0.4,z \/— z m+1/2 Hm+1/2 (kOp)Jm+l/2 (kop )Pm (COS(Q))

Here p>p'. Since there are also relations R= \/uf +u’ —=2uu COS(H),
2u, =\/( -7f+ (p+p’ ' i\/ 22  +(p-p) , then [4]

G(r TS m 1 2)HE, (ke ) o (ke ) P, (c05(6)). 9)

uu m=0

This allows to compute functions in the decomposition (6):

G, = )6, F. =—stm n6)do. (10)

e,

Here &, =1+0,, is the Neumann multiplier. Expressions (10) are given by
series (9), in which instead of Legendre polynomials one should substitute the

integrals from them 7 and [, :
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1+(=1)"" 7 P, (x)T,(x)dx

, (1D
1 \/l—xz

L :—I cos sm(n&)d@ %IP o (x)dx . (12)

I :—_[P cos(H))cos(nH)aW: -

In  vparticular, [, =0, [, =1 =0, if m+n id odd,

I("ZM)0 = Z[Fz (l /2+ m) / m!]2 / 7t , so we get another representation
r(1/2+m)|
(13)

m!

) 4 -
Go(r_r):iJLZT_mz()( +1)H2m+1/2(k” )[2m+1/2(k0”-){

For integral (12) one can fined
(1+(—1)"+’”)(m—n+1)(m—n+3)...(m+n+1)

7r(m—n)(m—n+2)...(m+n)

=2 (14)

We express the Legendre polynomials P( ) using Chebyshev polynomials:

B =T, R=T, P,=3/4T,+1/4T,, P,=5/8T,+3/8T,, P,=35/64T, +5/16T,+9/64T,, ...
To calculate subsequent expansions, we have obtained the recurrent formulas
for the decomposition coefficients, but they are some cumbersome. It is conven-
ient to calculate integrals using the orthogonality of Chebyshev polynomials:
I, =6, Loy =26, 1,,=0, if n>m and if ntm is odd. We have:
15, =3/4, I;,=3/8; I;;=5/8; I,,=9/64; I,,=5/16; I,,=35/64....
Thus, it is possible to compute GF (9) as a decomposition of (6) with known
and simply computable functions G, and F),.

In the work [4] the functions F, were not considered, and for G, the for-
mula (1.15) is received resulted with a typo (instead of 1 it is necessary to take
1/2). This formula coincides with (13) (up to the factor 47 determining the
GF) and in our case it can be written as:

\/ﬁz n+2m+1/2) n+2m+1/2(ku )z (k) I (r2mn . (15)
m=0

Let's consider one more representation of G, and F, on an example G,.
First take the decomposition of GF

_ _ U ypmann
G—r;)gm —4”2( ik, )" R ,

m=0
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Denoting a” =4pp’/ [(p + p')2 + (z - Z’)2:|, according to (10) we write the

decomposition G, into a double series with coefficients (— ik, )m G,, » where the
integrals are denoted
2m—2 m—1"% m—1)/2
G, = - ( oo’ /a) J.cos(né’)(l—oz2 cos(@))( a6,
n 0

They can be represented as
m—1)/2
o2 ma LT, (x)(l—azx)( :
G, =—(Jro'1a) |
2
T (c"n -1 \/1 —X
and also calculate through elliptic integrals.

dx,

3. IEs transformation. Kernels. Convergence

So, the transformation of the equations can be performed on the basis of
the transfer of differentiation operators V- VV . and V x from the coordinate
of the observation point in kernel to the source point with the use of integral
theorems, which in the one-dimensional case are reduced to integration in parts.

This results to the surface charge density g=ia)_lV-1]. It is convenient to

transfer these operators to weight functions when using functionals or projection
algorithms. Another approach is the allocation of the singular part of the integral
operator and its reversal (regularization). In particular, after integration by angle
and differentiation by z, GF acquires a Cauchy-type singularity [12—-14], for
which and for the logarithmic singularity there are inversion formulas. Differen-
tiation in (1)—(3) requires the definition of singular integrals in the sense of the
principal value, for example, by Cauchy. The neighborhood of the singular point
of origin is removed from the kernel, and the integral is understood as the limit
when the neighborhood is tightened into a point, thus there is a nonintegral term
[34]. This procedure is also regularization, and the IE of the 1st kind it is re-
duced to the IE of the 2™ kind. In numerical algorithms, a differentiated kernel
can be computed directly using G or its decomposition (10). To modify the ker-
nel, it is possible to introduce new potentials and perform the replacement of
variables and functions. In particular, the representation of a vector field through
new functions related to its potential and solenoid parts. In 1938, Gallen pro-
posed an equation with the kernel G. It is based on the representation of the vec-
tor potential through the current density and G, followed by the integration of
the wave equation for A. in this case, there are integration constants, which are
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determined from the boundary conditions. A similar approach is used in [4]. In
fact, the use of the potential A rather than the field E means integration over the
observation point [35]. Such integration is convenient in functionals when trans-
ferring operators to weight functions [34]. An approach based on the use of
three-dimensional volume equations for vector potentials is described in [34,
35]. For one-dimensional is it is possible to apply the method of direct integra-
tion on the observation point [35, 36]. The singularity of a kernel depends on
whether differential or integral operators act on it. The integration reduces sin-
gularity. The action of the operators V, Vx and V®V on G can be trans-
ferred to other functions. This, in particular, it can be the current density or the
field. The transfer of the differential operator to the current density gives the
divergence V -J, i.e. a formulation with respect to the charge density.

Let us consider other approaches to the transformation of IE (4). Consid-
ering its right part as a one-dimensional field, we use Helmholtz's theorem:

E. (z) =—grad, (U(z)) +rot, (ZOV(Z)) = —azU(z) . (16)
Here grad,=z,0., rot,(z,V(z))=12,0,xz,V(z)=0. Helmholtz’s theorem
uniquely defines the vector field through its solenoid and potential part, i.e.
through its rotor and gradient. A one-dimensional field cannot have a solenoid

part, which shows a very approximate view of one-dimensional PE for real VAs
modeling. It follows that the entire integral in (4) can be written as a gradient.

After integration we get the ratio (6), (7), in which U ( ) —0_E, ( ) can be

interpreted as the voltage in the gap of the VA. Thus, obtaining equations for
potentials leads to a lower kernel singularity than obtaining equations for fields.
The PE is a record of the boundary condition for the electric field (its longitudi-
nal component). In the Hallen equation the boundary conditions are written for
the vector potential component. The kernel of this IE is function (11).

4. Model of optically pamped CNT

For structures with a surface current, it is convenient IDE [35, 37]
E_=E, +E, , in which the total tangent field is the sum of the tangent field

E,, of the plane wave and the tangent diffraction field on CNT, at that
n=ocKE_and

n=_¢E,, - zkfj r.—r!) n(rr')+k0’2VG(rT—rf’)V’-n(rT’)}dzr', (17)

Where & = Z,0 . To reduce the singularity, the stationary functional is formed

by multiplying (19) scalar by n* , integrating over the CNT surface and trans-
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ferring the operator action from G to 1]*. Writing (17) in operator form
n=S%E,, +K (I]) , denoting the integration by a scalar product (,) and using

the divergence theorem, we obtain a functional with zero stationary value in the

form ®=(nn-¢E,, ~K(n)) or 0=(nn)-£(nE, )-iké(nG(n)+ik'e(V-nG(n)-

Here © is an integral operator with kernel G. We used the relation

n*VGZV-(GI]*)— GV1'. Since the CNT surface is closed and has no
bounding contours, the integral form V-(Gn*) over it is zero. The complex
value P=(n,E_)/2=0"(m,E,)/2 is the power developed on CNT, and

when Re(a) < 0 there is an amplification of the incident wave. It is really con-
venient to estimate it with respect to the scattering cross sections at pumping

~

Y. and without it X . The calculations show that the equality

s

B-P = (N,ET)/Z —(M,E,)/2 is fulfilled with an accuracy of one percent.

Here on the left is the radiation power, the tilde denotes the solution when
pumped, and without it the dissipative solution.

The equation (19) was solved for CNT armchair and zigzag with lengths
/=100 microns and @ =20 nm Fig. 2. The Kubo formula was used for the
nonequilibrium conductivity of CNTs [21] under optical pumping. The results

show a strong dependence of the amplitude #_ on the chemical potential z,. At
large CNT radii, their conductivity for both configurations is close to that of
graphene [33, 34]. We used the basis functions ¢, (z) = Z(l —Z)Z'H , neglecting

the dependence on ¢, and the representation (19). The solution of IDE with a
semi-inverted kernel is also obtained. For Fig. 2 the results of such calculations
are given. Both algorithms give the same results. Also we have calculated the
strip graphene nanoribbon LVs.

5. Conclusions

We present various forms of the Pocklington, Harrington and Hallen equations,
as well as other similar IEs obtained by converting these equations with decreasing the
degree of singularity of their nuclei and methods for obtaining them, are considered.
One-dimensional singular IEs of electrically thin VAs are also considered. The conver-
gence of the THz wave amplification algorithm is considered on the example of LV as
an active CNT. The convergence of the algorithms is determined by the singularity of
the kernel, the fulfillment of conditions on the edge and the proximity of the selected
first basis function to the solution. The best stability corresponds to the second kind
Fredholm IE and determined by the accuracy of the kernel calculation.
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0.0 2.0 4.0 6.0 8.0 10.0

f, HHz
Fig. 2. The ratio of the scattered power of the pumped and
conventional CNT at different power densities of the optical
pump: 10 (curves 1), 20 (2), 30 (3) and 40 (4,5) W/cm®. Solid
curves — Armchair (300,300), dashed curves — zigzag
(300,120). Curves 14 are obtained for / = 10 mm, curves 5
correspond to 1 mm, all CNT parameters correspond to [20].

Puc. 2. CooTHOLIeHHE paccessHHON MOUTHOCTH HaKauyMBaeMOn
¥ OOBIYHOH YTIIEPOJHON HAHOTPYOKH IPU Pa3IHIHBIX
IUIOTHOCTSIX MOIIHOCTH ONTHYecKoW Hakauku: 10 (kpusbie 1),
20 (2), 30 (3) u 40 (4,5) Br/cM?. CILIONIHBIE KPUBBIE —
«xpecnoy» (300,300), myHKTHpHBIE KPUBbIE — 3UI3ar
(300,120). Kpussie 1—4 nonyuens! a1s / = 10 MM, KpuBbIe 5
COOTBETCTBYIOT 1 MM, BCE TapaMeTphl YTIePOJHON
HaHOTPYOKHU cOOTBETCTBYIOT [20]
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