гибридных белков, высокую стабильность и гексомерную форму. Как мы считаем, что такое сочетание позволит нам с успехом применить её в получении амилоидогенных пептидов и исследовании процессов амилоидообразования.

Список литературы / References:

1. Bywater R.P. Protein folding: a problem with multiple solutions. J. Biomol. Struct. Dyn., 2013, vol. 31, iss.4, pp. 351-362.

2. Zanuy D., Nussinov R., Alemán C. From peptide-based material science to protein fibrils: discipline convergence in nanobiology. *Phys Biol.*, 2006, vol. 3, iss. 1, pp. 80-90.

3. Lu J.X., Qiang W., Yau W.M., Schwieters C.D., Meredith S.C., Tycko R. Molecular structure of beta-amyloid fibrils in Alzheimer's disease brain tissue. *Cell*, 2013, vol. 154, iss. 6, pp. 1257-1268.

4. Boke E., Ruer M., Wühr M., Coughlin M., Lemaitre R., Gygi S.P., Alberti S., Drechsel D., Hyman A.A., Mitchison T.J. Amyloid-like Self-Assembly of a Cellular Compartment. *Cell*, 2016, vol. 166, iss. 3, pp. 637-650.

5. Murina V.N., Melnik B.S., Filimonov V.V., Uhlein M., Weiss M.S., Müller U., Nikulin A.D. Effect of conserved intersubunit amino acid substitutions on Hfq protein structure and stability. *Biochemistry*, Moscow, 2014, vol. 79, iss. 5, pp. 469-77, doi: 10.1134/S0006297914050113.

ТЕОРЕТИЧЕСКОЕ ИССЛЕДОВАНИЕ КОЛЕБАТЕЛЬНЫХ СПЕКТРОВ КОМПЛЕКСОВ КАРНОЗИНА С ЦИНКОМ

Демухамедова С.Д.

Институт Проблем физики, Бакинский Государственный Университет ул. З.Халилова, 23, г. Баку, AZ-1148, Азербайджан e-mail: svetlanabest@mail.ru

Аннотация. В работе квантовохимическим методом функционала плотности DFT/B3LYP в базисе 6-31G исследовано пространственное и электронное строение и колебательные спектры мономерных комплексов природного дипептида карнозина с цинком для двух таутомерных форм N¹H и N³H его имидазольного кольца. Получены геометрические и энергетические параметры, рассчитаны величины парциальных зарядов на атомах, получены частоты и интенсивности полос поглощения ИК спектров комплексов и теоретические спектры комплексов обоих таутомерных форм. В работе приведены энергетические параметры, значения дипольных моментов и HOMO и LUMO орбиталей, а также парциальные значения зарядов на атомах исследуемых комплексов. Дипольные моменты молекул свидетельствуют о большей компактности пространственной конфигурации комплексов с формой имидазольного кольца N³H. Произведена теоретическая интерпретация полученных теоретических спектров мономерных комплексов карнозина с цинком для двух таутомерных форм по распределению потенциальной энергии по колебательным координатам.

Ключевые слова: карнозин, комплексы с цинком, структура, квантово-химические расчеты, колебательные спектры.

THEORETICAL STUDY OF VIBRATIONAL SPECTRA COMPLEXES OF CARNOSINE WITH ZINC

Demukhamedova S.D.

Institute for Physical Problems, Baku State University Z.Khalilov str., 23, Baku, AZ-1148, Azerbaijan e-mail: svetlanabest@mail.ru

Abstract. In this work the spatial and electronic structure and vibrational spectra of the monomeric complexes of the natural dipeptide of carnosine with zinc for two tautomeric forms of $N^{1}H$ and $N^{3}H$ of its imidazole ring were studied by the quantum-chemical method of the DFT / B3LYP density functional in the 6-31G basis. Geometric and energy parameters were obtained, the values of partial charges on atoms were calculated, the frequencies and intensities of the absorption bands of the IR spectra of the complexes and the theoretical spectra of the complexes of both tautomeric forms were obtained. The paper presents energy parameters, the values of dipole moments and HOMO and LUMO orbitals as well as partial values of charges on the atoms of the complexes under study. The dipole moments of the molecules indicate a greater compactness of the spatial configuration of the complexes with the shape of the imidazole N3H ring. Theoretical interpretation of the obtained theoretical spectra of monomeric complexes of carnosine with zinc for two tautomeric forms on the distribution of potential energy over vibrational coordinates was made.

Key words: carnosine, complexes with zinc, structure, quantum-chemical calculations, vibrational spectra.

Карнозин - природный дипептид, состоящий из двух аминокислотных остатков - β-аланина и L-гистидина. Известно, что карнозин выполняет в организме человека важные физиологические функции [1]. Производные карнозина предложены для лечения старческой катаракты и диабетических осложнений [2]. Изучение природных гистидинсодержащих антиоксидантов, к числу которых относится карнозин, открывает перспективы для создания новых лекарственных препаратов с широким спектром фармакологической активности. В настоящее время ведутся интенсивные исследования комплексов карнозина с атомами металлов. Особенно большое значение в медицинской практике получили комплексы карнозина с цинком. Полимерный хелатный комплекс карнозина с цинком стал

МОЛЕКУЛЯРНАЯ БИОФИЗИКА И ФИЗИКА БИОМОЛЕКУЛ

БФФХ-2017

клинически применяться в Японии под названием Polaprezinc как очень эффективный препарат для лечения язвы желудка. Было показано, что Polaprezinc стимулирует производство слизи и поддерживает целостность барьера слизистой оболочки желудка [3]. L-CAZ высоко эффективен при клиническом применении и не имеет серьезных побочных эффектов. В работе [4] полагают, что механизм действия Polaprezinc состоит в поглощении кислородного радикала и ускорении заживления желудочно-кишечного тракта. Показано, что L-CAZ проявляет ингибирующее действие на Helicobacter pylori [5]. Его фармакологическая активность, по-видимому, связана с тем, что оставаясь достаточно долго в желудке без диссоциации, полимерный комплекс специфически связывается с язвенными поражениями, после чего цинк и карнозин высвобождаются для лечения язвы. Здесь играют свою роль и ионы цинка и антиоксидантные свойства карнозина, стабилизирующие действие мембран [5,6]. В работе [7] показано, что цинковый комплекс карнозина препятствует развитию воспалительного процесса в слизистой оболочке большого кишечника. Недавно [8] было предложено использовать Polaprezinc) для предотвращения развития рака желудочнокишечного тракта. Комплекс карнозина с цинком может применяться в профилактике остеопороза, так как оказывает стимулирующее действие на формирование кости и восстанавливает потерю костной массы при старении, дефиците кальция и витамина D, артрите и переломах. [9]. Несмотря на наличие большого экспериментального материала, механизм действия карнозина и его комплексов на молекулярном уровне до сих пор окончательно не выяснен. Все выше сказанное подтверждает необходимость всестороннего исследования карнозина и его комплексов различными экспериментальными и теоретическими методами.

Данная работа посвящена квантовохимическому исследованию колебательных спектров комплексов карнозина с цинком в двух известных таутомерных формах N¹H и N³H его имидазольного кольца. Ранее нами были изучены пространственные и электронные структуры мономерных и димерных комплексов карнозина с цинком [10], полимерный комплекс карнозина с цинком [11], а также колебательные спектры молекулы карнозина [12]. При образовании комплексов с цинком [10] атом цинка, образует координационные связи с атомами O15, N9 и N13 молекулы карнозина и образуется координационная полость, состоящая из двух хелатных колец –пяти- и шестичленного, имеющих общую координационную связь Zn-N9.

Квантовохимический расчет колебательного спектра молекулы карнозина был проведен по программе Gaussian-09 методом функционала плотности B3LYP с использованием базиса 6-31+G. Расчетные модели оптимизированных двух форм комплексов карнозина с цинком приведены на рисунке 1.

Рисунок 1 – Модели комплекса молекулы карнозина с цинком в двух таутомерных формах N¹H (слева) и N³H (справа) после оптимизации методом DFT/B3LYP/6-31

В таблице 1 приведены полученные энергетические параметры. Как видно из таблицы, полная энергия у комплекса карнозина с цинком в таутомерной форме N³H всего на 0.005 а.е. выгодней. Это говорит о том, что в нормальных условиях реализация карнозина в обоих формах практически одинакова.

• •	Shepreni teenine napamerphi ne daninami mereda Dr 1, DeD 11, e ere									
	Энергия	Карнозин N ¹ H	+Zn	Карнозин N ³ H+Zn -2574.3462						
	Total energy (A.U.)	-2574.3413								
	nuclear repulsion energy (Hartrees)	1714.7831 9.1239		1713.7615						
	Dipole moment (Debye)			7.8311						
		α-электроны	β- электроны	α- электроны	β- электроны					
	НОМО-орбиталь	-0.23816	-0.23526	-0.23392	-0.23105					
	LUMO-орбиталь	-0.02175	-0.18300	-0.01311	-0.15868					

T -		D DT (D A)	TIDIC	210	
Гаолина	I – Энергетические параметры по ланным метола	DFT/B3	LYP/6-	-310	Ì

В таблице 2 обобщены результаты расчетов распределения зарядов на атомах обоих таутомерных форм $N^{1}H$ и $N^{3}H$ мономерных комплексов карнозина с цинком по данным метода B3LYP/6-31G. Разность значений энергий HOMO и LUMO орбиталей показывает, что комплекс карнозина $N^{3}H$ +Zn более устойчив (на 0.00440 для α -электронов и на 0.02011 для β -электронов).

302

1 a 0 J 0 H a 2 - 1 a 0 H 0 0 J 0 J 0 H 0 0 S a 0 X 10 B H a a 10 M a X H 0 J a H H b M M C 10 J a 0 J L J L J L J L J L J L J L J L J L J	Таблина 2 – Расп	прелеление зарялов на атом	ах по ланным метола D	FT/B3LYP/6-31G (в ел.заг	эяла)
--	------------------	----------------------------	-----------------------	--------------------------	-------

	- / 1		11					
Атом	Карнозин	Карнозин	Атом	Карнозин	Карнозин	Атом	Карнозин	Карнозин
	N ¹ H+Zn	N ³ H+Zn		N ¹ H+Zn	N ³ H+Zn		N ¹ H+Zn	N ³ H+Zn
1 N	-0.684	-0.468	11 C	-0.321	-0.325	21 H	0.175	0.196
2 C	0.258	0.264	12 C	-0.139	-0.142	22 H	0.201	0.219
3 N	-0.387	-0.673	13 N	-0.778	-0.792	23 H	0.179	0.185
4 C	-0.048	0.118	14 O	-0.393	-0.409	24 H	0.189	0.180
5 C	0.322	0.151	15 O	-0.566	-0.585	25 H	0.158	0.145
6 C	-0.315	-0.307	16 O	-0.427	-0.406	26 H	0.205	0.222
7 C	-0.070	-0.080	17 H	0.338	0.165	27 H	0.339	0.348
8 C	0.569	0.580	18 H	0.178	0.332	28 H	0.360	0.351
9 N	-0.561	-0.537	19 H	0.171	0.174	29 Zn	0.537	0.545
10 C	0.451	0.519	20 H	0.194	0.161	30 H	-0.135	-0.131

После получения оптимизированных геометрических и энергетических параметров нами был проведен спектральный анализ для обоих таутомерных форм комплексов карнозина с цинком. Сложность в проведении расчетов колебательных спектров заключается в том, что методы описывает разные области спектра с неодинаковой точностью. Неэмпирические методы позволяют получить более точные результаты по сравнению с полуэмпирическими расчетами при вычислении интенсивности ИК-полос поглощения.

В таблице 3 приведены теоретические значения частот нормальных колебаний и интенсивностей соответствующих полос поглощения в ИК спектре для двух таутомерных форм $N^{1}H$ и $N^{3}H$ мономерных комплексов карнозина с цинком по данным метода DTF/B3LYP/6-31G.

Таблица 3 – Теоретические частоты(см⁻¹), интенсивности (КМ/Mole) в ИК спектрах

Карнозин N ¹ H+Zn		Карнози	н N ³ H+Zn	Карно	зин N ¹ H	Карнозин N ³ H		
v,см ⁻¹	Ι	v,см ⁻¹	Ι	v,cm ⁻¹	Ι	v,см ⁻¹	Ι	
3681	29.68	3685	64.22	1004	21.11	1013	15.76	
3582	15.34	3562	13.08	1004	64.53	997	22.24	
3484	8.82	3470	6.49	947	16.88	970	27.94	
3321	1.01	3326	0.18	929	39.51	965	14.88	
3308	3.62	3312	2.31	920	100.46	915	56.34	
3122	0.30	3139	4.66	884	11.21	900	1.28	
3106	2.77	3130	6.87	881	28.31	855	7.28	
3105	10.05	3129	1.38	870	96.72	838	4.01	
3096	12.90	3083	6.94	830	9.19	817	32.17	
3055	9.54	3047	61.20	797	21.67	774	8.76	
3047	50.89	3038	9.77	743	45.48	721	74.21	
3037	8.33	2972	9.46	707	2.23	704	81.06	
1793	121.33	1802	215.24	681	16.26	684	12.73	
1706	69.62	1707	35.32	670	9.54	669	108.35	
1612	119.47	1677	174.72	661	21.26	660	2.33	
1589	166.10	1610	19.51	658	41.54	6429	42.69	
1573	13.14	1576	76.22	645	53.84	636	57.63	
1549	67.56	1559	3.41	620	14.31	629	18.34	
1521	11.59	1515	17.03	607	147.79	556	14.67	
1506	2.63	1509	34.60	541	4.40	534	7.35	
1466	164.73	1508	15.60	510	21.13	527	101.36	
1454	5.85	1462	31.68	496	25.33	494	37.84	
1425	29.15	1447	14.99	482	21.62	481	23.94	
1410	85.04	1409	10.37	447	24.55	440	12.47	
1402	7.80	1393	9.84	407	3.98	396	12.68	
1379	18.63	1356	21.06	355	12.57	358	11.77	
1337	350.60	1349	12.28	347	12.18	344	5.01	
1336	2.65	1338	112.68	324	14.10	335	1.48	
1327	26.63	1318	1.97	291	1.40	295	14.48	
1301	117.15	1311	3.18	288	5.73	279	4.95	
1296	9.47	1289	128.68	253	6.94	244	0.16	
1284	140.14	1269	82.48	230	3.13	228	0.20	
1256	152.63	1263	97.37	202	5.70	216	0.19	
1201	72.22	1239	15.47	161	3.04	191	0.93	
1193	106.53	1207	22.71	147	1.30	156	2.65	

МОЛЕКУЛЯРНАЯ БИОФИЗИКА И ФИЗИКА БИОМОЛЕКУЛ

БФФХ-2017

(1)											
Карнози	ин N ¹ H+Zn		Карнози	ин N ³ H+Zn		Карноз	ин N ¹ H		Карнозі	ин N ³ H	
1188	93.74		1175	8.86		125	2.23		124	0.10	
1142	105.51		1160	15.69		81	5.45		94	6.10	
1128	11.18		1123	38.43		74	1.40		88	4.92	
1121	81.04		1103	40.13		61	6.19		74	9.19	
1100	12.49		1080	102.68		53	2.84		63	8.87	
1086	8.97		1056	19.87		34	2.11		45	1.78	
1030	23.65		1042	73.30		24	2.57		27	2.00	

На рисунке 2 приведены теоретические ИК-спектры рассчитанных таутомерных моделей комплексов карнозина с

Продолжение таблицы 3 – Теоретические частоты(см⁻¹), интенсивности (КМ/Mole) в ИК спектрах

цинком и, как видим, наблюдается значительное различие в спектрах этих моделей. Следовательно, по колебательному спектру можно судить о присутствии в экспериментальном образие определенной таутомерной формы или их смеси с преобладанием одной из форм. Для теоретической интерпретации колебательных спектров комплексов карнозина с цинком был проведен анализ распределения потенциальной энергии по колебательным координатам с помощью программы VEDA4 [13], которая использует в качестве входных данных файлы из уже проведенного расчета по программе Gaussian. Анализ показывает, что в обоих комплексах 100 % потенциальной высокочастотных лежащих энергии колебаний, в интервале частот 3685÷3470 см⁻¹ и 3321÷2972 см⁻¹, сосредоточены соответственно в колебательных координатах растяжения NH и CH связей. Характеристическими для валентных колебаний связи С=О являются интенсивные 1612 см⁻¹ в комплексе N¹H и 1677 см⁻¹ в комплексе N³H и малоинтенсивная полоса 1549 см⁻¹ в комплексе N¹H. попосы Самая интенсивная полоса поглощения в комплексе N¹H - полоса 1337см⁻¹, потенциальная энергия этого колебания сосредоточена в колебательных координатах хелатных колец и характеризуется валентным колебанием N₉C₁₀, деформационным HC₁₂N₁₃ и неплоским HC₁₁C₁₀N₉. Рассмотрим полосы поглощения, в которых сосредоточена энергия деформационных колебаний. В комплексе N¹H это полоса 1706 (HN₁₃H), полосы 1573, 1521 и 1506 (HCH), полосы 1327, 1300 и 1296 (HC12N13), полоса 947 (OCC) и полоса 229 см⁻¹ (CCN и CNC). В комплексе N³H полосы 1559, 1508 и 1508 (НСН), полоса 1707 (НNН), полосы 1349 и 1042 см⁻¹ (НС₆С₅), полоса 1239 см⁻¹ (НС₄С₅ и НС₂N₁). Полоса 970 см⁻¹ (N₁C₂N₃), полоса 964 см⁻¹ (53 % C₄N₃C₂ и по 11 % N₁C₂N₃ и C₅C₄N₃), полоса 721 см⁻¹ (42 % O₁₄C₈O₁₅ и 15 % - выход атома O₁₄ из плоскости C₇C₈O₁₅).

Рисунок 2 – Теоретические ИК спектры молекул карнозина N¹H+Zn (сверху) и карнозина N³H+Zn (снизу)

Полосы, характеризующиеся присутствием в моделях атома цинка. Самая интенсивная полоса в комплексе N³H – это полоса 1802 см⁻¹с интенсивностью 215, 100 % потенциальная энергии этого колебания сосредоточена в координатах растяжения связи ZnH. В комплексе N¹H ей соответствует менее интенсивная полоса 1793 см⁻¹ (121). Полосы поглощения 1453 см⁻¹ в N¹H и 1356 см⁻¹ в комплексе N³H определяются деформационными колебания угла HN₁₃Zn. В низкочастотной области спектра полосы, в появлении которых принимает участие атом цинка – это 1004, 510, 496, 482, 447, 324, 291, 288, 253, 230, 161, 147, 125, 81, 74, 61 и 53 см⁻¹ для комплекса N¹H и 1012, 527, 494, 481, 335, 279, 244, 228, 216, 191, 156, 124, 94, 88, 74, 63 см⁻¹ для комплекса N³H. Энергия колебания полосы 496 см⁻¹ сосредоточена в деформационном колебании H₃₀ZnO₁₅, а полосы 510 см⁻¹ - в неплоском колебании HZnO₁₅C₈. В комплексе N³H полосы 526 см⁻¹ и 481 см⁻¹ содержат 70 % энергии торсионного колебания HZnO₁₅C₈, а полоса 526 см⁻¹ и 481 см⁻¹ содержат 70 % энергии торсионного колебания HZnO₁₅C₈, а полоса 526 см⁻¹ приходитет и ще 10% энергии координаты выхода C=O связи из координационной плоскости. 45% энергии деформационного колебания HZnO₁₅ сосредоточено в полосе 494 см⁻¹. 30% энергии растяжения связи ZnO₁₅ приходится на полосу 279 см⁻¹, 10% -на полосу 335 см⁻¹ и 15% - на полосу 244 см⁻¹. Полосы 156 и 124 см⁻¹

304

определяются энергией различных колебательных координат с цинком. В комплексе N¹H интенсивная полоса 1004 см⁻¹ содержит энергию валентного колебания $HN_{13}Zn$ и торсионного колебания $C_{12}C_{11}C_{10}N_9$ координационной полости. Полоса 253 см⁻¹ содержит только энергию валентного колебания ZnO_{15} , 496 и 288 – деформационные колебания $HZnO_{15}$ и $ZnO_{15}C_8$, полоса 510 см⁻¹ – торсионное колебание $HZnO_{15}C_8$. В остальных полосах присутствует энергия и других, в основном неплоских колебаний.

Область 1600-600 см⁻¹. Опишем самые интенсивные полосы поглощения. В комплексе N¹H интенсивные полосы 1589 и 1466 см⁻¹ содержат энергию растяжения СС связей и деформаций угла HNC имидазольного кольца. Полоса 1549 см⁻¹ содержит 80% энергии растяжения связи С₁₀=О₁₆. Полоса 1410 см⁻¹ –энергии СС и СN связей и угла HC₄N₃ имидазольного кольца, а также неплоского колебания HC₇C₈O₁₅. Интенсивная полоса 1301 см⁻¹ определяется энергией деформационных колебаний угла $HC_{12}N_{13}$. Полосы 1256, 1201, 1193 и 1188 см⁻¹ содержат энергию растяжения связи O₁₅C₈ и деформации угла HC₇C₈. Полосы 1283 и 1121 см⁻¹ определяются энергией NC связей имидазольного кольца и деформациями соответственно HC₁₂N₁₃ координационной полости и HN₁C₅ имидазола. Полоса 920 см⁻¹ содержит энергию колебаний СС связей, полоса 870 см⁻¹ - энергию СС и NC связей, а полоса 607 см⁻¹ - энергию деформаций угла O₁₅C₈C₇ и неплоского колебания выхода связи O₁₆ из координационной плоскости. В комплексе N3H полоса 1576 см⁻¹ содержит 80 % энергии валентного колебания $O_{16}C_{10}$, полоса 1269 см⁻¹ энергию колебания $O_{15}C_8$, полосы 1263 и 1079 см⁻¹ помимо валентного колебания $O_{15}C_8$ содержат энергию деформационого колебания HC₇C₈, а полоса 1080 см⁻¹ еще энергию валентного колебания C₇C₆. Интенсивные полосы 1338 см⁻¹ содержит соответственно энергию валентного колебания N_9C_{10} и деформационного $HC_{11}C_{12}$, а 1289 см⁻¹ деформационное $HC_{11}C_{12}$ и торсионные $HC_{11}C_{10}N_9$ и $HC_7C_8O_{15}$ координационный полости. Полоса 1042 см⁻¹ – чисто деформационное HC_6C_5 . Полоса 721 см⁻¹ – деформационное $O_{14}C_8O_{15}$ и неплоское типа выхода из плоскости связи O₁₄, а полоса 704 см⁻¹ – неплоское N₁C₂N₃C₄ и выход из плоскости связи O₁₆. Полоса 669 см⁻¹ содержит 77 % энергии неплоского колебания имидазольного кольца HN₃C₄C₅.

Таким образом, проведенный нами анализ распределения потенциальной энергии с помощью программы VEDA4 дает наглядную интерпретацию результатов расчета колебательных спектров молекул.

Список литературы / References:

1. Болдырев А.А. *Карнозин*. М.: Изд-во МГУ, 1998, 320 с. [Boldyrev A.A. *Carnosine*. Moscow: Publishing house of the Moscow State University, 1998, 320 р. (In Russ.)]

2. Attanasio F., Cataldo S., Fisichella S., Nicoletti S., Nicoletti V.G., Pignataro B., Savarino A., Rizzarelli E. Protective effects of L- and D-carnosine on alpha-crystallin amyloid fibril formation: implications for cataract disease. *Biochemistry*, 2009, vol. 48, no. 27, pp. 6522-6531.

3. Dajani E.Z., Klamut M.J. Novel therapeutic approaches to gastric and duodenal ulcers: an update. *Expert Opinion on Investigational Drugs*, 2000, vol. 9, no. 7, pp. 1537-1544.

4. Takei M. Development of polaprezinc research. Yakugaku Zasshi, 2012, vol. 132, no. 3, pp. 271-277. (In Jap.)

5. Matsukura T., Tanaka H. Applicability of zinc complex of L-carnosine for medical use. *Biochemistry*, 2000, vol. 65, no. 7, pp. 817-823.

6. Sakae K., Agata T., Kamide R., Yanagisawa H. Effects of L-carnosine and its zinc complex (Polaprezinc) on pressure ulcer healing. *Nutrition in Clinical Practice*, 2013, vol. 28, no. 5, pp. 609-616.

7. Samborski P., Grzymisławski M. The Role of HSP70 Heat Shock Proteins in the Pathogenesis and Treatment of Inflammatory Bowel Diseases. *Advances in Clinical and Experimental Medicine*, 2015, vol. 24, no. 3, pp. 525-530.

8. Ooi T.C., Chan K.M., Sharif R. Antioxidant, Anti-inflammatory, and Genomic Stability Enhancement Effects of Zinc 1-carnosine: A Potential Cancer Chemopreventive Agent? *Nutrition and Cancer*, 2017, vol. 69, no. 2, pp. 201-210.

9. Yamaguchi M. Role of nutritional zinc in the prevention of osteoporosis. *Molecular and Cellular Biochemistry*, 2010, vol. 338, no. 1-2, pp. 241-254.

10. Demukhamedova S.D., Alieva I.N. and Godjayev N.M.. Spatial and electronic structure of monomeric and dimeric complexes of carnosine with zinc. J. Struct. Chem., 2010, vol. 51, no. 5, pp. 824-832.

11. Demukhamedova S.D., Alieva I.N., Gajiyev Z.I. Quantum chemistry investigation of the carnosine polymer complex with zinc. *Fizika*, 2010, vol. 16, no. 2, pp. 597-600.

12. Демухамедова С.Д., Алиева И.Н., Гаджиев З.И., Годжаев Н.М. Ab initio исследование структуры и колебательного спектра молекулы карнозина. *Journal of Qafqaz University*, 2009, № 27, с. 15-25. [Demukhamedova S.D., Alieva I.N. Hadjiev Z.I., Godjayev N.M. Ab initio investigation of carnosine molecule structure and vibration specter. *Journal of Qafqaz University*, 2009, no. 27, pp. 15-25 (In Russ.)]

13. Jamroz M.H. Vibrational Energy Distribution Analysis. VEDA 4, Warsaw, 2004-2010.