Based on the previous results for investigation of various retarding materials for super-wide bandwidth long-term delay lines [1], the principles of design and the achieved parameters of commercially produced and developed RF-signal delays with the use of fiber-optic circuits were studied. Considering the shortcomings of existing devices, the principles of optimization and design of fiber-optic delay lines for next generation devices: (1) a distributed structure of low-power emitters based on dense wavelength division multiplexing, (2) a multicore optical fiber as a retarding medium, (3) two-stage processing including an optoelectronic repeater unit, and (4) an optical recirculation time-delay circuit were proposed. Experimental verification of the proposed principles has shown their feasibility, efficiency and the opportunity to significantly improve the energy consumption and weight-dimensional characteristics, to increase the maximum delay time up to the millisecond range with a step in the microsecond range, also to improve the quality and flexibility of the delay device.
ultra-wideband long-term delay of radio frequency signals, fiber-optic delay circuit
1. Belkin M. E. Sverhshirokopolosnoe ustroystvo dolgovremennoy zaderzhki radiosignalov: analiz optimal'nogo resheniya // Infokommunikacionnye i radioelektronnye tehnologii. 2018. T. 1, № 1. S. 103-120.
2. Belkin M. E., Kudzh S. A., Sigov A. S. Novye principy postroeniya radioelektronnoy apparatury SVCh-diapazona s ispol'zovaniem radiofotonnoy tehnologii // Rossiyskiy tehnologicheskiy zhurnal. 2016. № 1 (10). S. 4-20.
3. Long Microwave Delay Fiber-Optic Link for Radar Testing / Newberg I. L. [et al.] // IEEE Transactions on Microwave Theory and Techniques. 1990. T. 38, № 5. S. 864-866.
4. Belkin M. E., Belkin L. M. Issledovanie effektivnosti primeneniya poluprovodnikovogo lazernogo izluchatelya dlya peredachi mnogokanal'nogo analogovogo signala SVCh-diapazona // Nano- i mikrosistemnaya tehnika. 2009. № 11. S. 32-37.
5. Sklyarov O. K. Volokonno-opticheskie seti i sistemy svyazi. M.: SOLON-Press, 2004. 272 s.
6. Wurtz L. T., Wheless W. P. Design of a programmable 2-18 GHz microwave fiber-optic delay line // IEEE Southeastcon’97 Conference Proceedings. 1997. S. 11-19.
7. Optical frequency comb generator using optical fiber loops with single-sideband modulation / Kawanishi T., Sakamoto T., Shinada S. [et al.] // IEICE Electronics Express. 2004. T. 1, № 8. S. 217-221.
8. Microwave photonic delay line signal processing / Diehl J. F. [et al.] // Applied Optics. 2015. T. 54, № 31. S. F35-F41.
9. Design and performance of Ka-band fiber-optic delay lines / Urick V., Singley J., Sunderman C., Diehl J., Williams K. // NRL Memorandum Report, NRL/MR/5650-12-9456 (2012).
10. Design and performance of a 560-microsecond Ku-band binary fiber-optic delay line / Singley J., Diehl J., McDermitt C., Sunderman C., Urick V. // NRL Memorandum Report, NRL/MR/5650-14-9545 (2014)
11. Multi-core fiber design and analysis / Koshiba M. [et al.] // ECOC Technical Digest. 2011. P. 1-3