The effectiveness analysis of the adaptive method for active interference compensation in the receiving paths of primary radars is carried out. At that the method of adaptive compensation in the spectral domain is considered. The adaptive method allows to compensate active interference (particularly, digital television and cellular telecommunication) in its multipath propagation (caused by ground clutter). The features of using the adaptive method in the receiving paths of primary radars are formulated. The influence of the format of the transmitted signals (duty cycle of the transmitted signals) on the effectiveness of the adaptive compensation is estimated. A comparative evaluation of the effectiveness of active interference compensation in the receiving paths of primary and secondary radars is performed. The influence of active interference compensation on the effectiveness characteristics of wideband signals processing (in particular, on the sidelobe level at the compression filter output) is estimated.
primary radars, phase-shift keyed signals, active interference, adaptive compensation, compression filter
1. Versmissen H. Study of the performance degradation of the Belgian S-band air surveillance radars due to the interference of upcoming 4G technologies. Test Report, 2011. 55 s. [Elektronnyy resurs]. Rezhim dostupa: http://www.bipt.be/en/425/ShowDoc/3527/ Communications/Study_of_the_Performance_Degradation_of_the_Belgia.aspx (data obrascheniya: 16.03.2019).
2. Fridman L. B., Zubkov V. A., Mazayan N. R., Nikolaev S. F., Sinicyn E. A., Shil'dkret A. B. Pat. 103008 (RF). Ustroystvo adaptivnoy kompensacii televizionnyh pomeh. Opubl. v B. I., 2011. № 8.
3. Levanon N., Mozeson E. Radar signals. John Wiley & Sons, Inc., 2004. 411 s.
4. Lehtinen M., Damtie B., Nygren T. Optimal binary phase codes and sidelobe-free decoding filters with application to incoherent scatter radar // Annales Geophysicae. 2004. T. 22. S. 1623-1632.
5. Korshunov A. Yu., Mazayan N. R., Nikolaev S. P., Sinitsin E. A., Fridman L. B., Shildkret A. B. Phase-shift keyed signal compression using a mismatched sidelobe-free filter in the presence of Doppler frequency shift // Proc. of CriMiCo’2012 - 2012 22nd International Crimean Conference Microwave and Telecommunication Technology, Conference Proceedings (Sevastopol, Sept. 2-8, 2012). S. 1084-1085.
6. Cho J. Y. N. Multi-PRI signal processing for the terminal Doppler weather radar. Part II: Range-velocity ambiguity mitigation // J. Atmos. Oceanic Technol. 22. 2005. S. 1507-1519.
7. Fridman L. B., Korshunov A. Yu., Mazayan N. R., Nikolaev S. F., Sinicyn E. A., Shil'dkret A. B. Effektivnost' metoda raskrytiya neodnoznachnosti izmereniya dal'nosti dlya pervichnyh radiolokacionnyh stanciy // Vestnik Koncerna PVO «Almaz-Antey». 2013. № 1 (9). S. 54-58.
8. Korshunov A. Yu., Fridman L. B., Sinitsin E. A. Effectiveness of range ambiguity mitigation in primary radars when using signals with high pulse-repetition frequency // Proc. of CriMiCo 2013 - 2013 23rd International Crimean Conference Microwave and Telecommunication Technology, Conference Proceedings (Sevastopol, Sept. 8-14, 2013). S. 1154-1155.
9. Barker R. Group Synchronizing of Binary Digital Systems, in: Communications Theory, edited by W. Jackson. Academic Press, 1953. C. 273-287.
10. Fridman L. B., Ershov G. A., Myasnikov S. A., Perelomov V. N., Sinitsin E. A. Compression of phase-shift keyed signals by means of the mismatched sidelobe-free filter with application to coherent pulse radar // Proc. of European Microwave Week 2017 : “A Prime Year for a Prime Event,” EuMW 2017 - Conference Proceedings; 14th European Microwave Conference, EURAD 2017 (Nuremberg, Germany, Oct. 12-14, 2017). S. 235-238.