Abstract and keywords
Abstract (English):
The actual task of monitoring the state the human body is the creation of effective algorithms for computer technologies for processing biosignals based on nonlinear dynamic models. The development of nonlinear methods for analyzing the state of body systems is important, since bioprocesses have a nonlinear nature and fractal structure, which, as for developing systems, are characterized by structural self-organization according to the principle of scale-invariant self-similarity. An important connection has been established between the “communication systems” of the organism, their organization in the form of self-similar fractal structures with scaling nearby to the “golden ratio”. Examples of such structures are the nervous, muscular systems of the heart and the vascular and bronchial systems of the human body. For the first time, it is proposed to obtain detailed information about the state of the bio-networks of the human body for topical diagnostics based on wavelet-analysis of biosignals (wavelet-introscopy).

Keywords:
electrocardiogram, photoplethysmogram, rheogram, self-organization, self-similarity, fractals, scaling, autowaves, soliton, n-dimensional torus, KAM-theorem, FPU-theorem of “return”, wavelet-introscopy of bionets
Text
Text (PDF): Read Download
References

1. Aldonin G. M. Autonomous Monitoring of the Main Set of Parameners of the Cardiovascular Sistem // Biomedical Engeeniring. 2013. Vol. 46. Iss. 6. P. 232-236.

2. Soldatov A. V., Aldonin G. M., Cherepanov V. V. Hardware-Program Complex on the Basis of Recorder MSM-11 // Journal of Siberian Federal University. Engineering & Technologies. 2018. No. 11 (6). R. 671-678.

3. Wiener N, Rosenblueth A. The mathematical formula tion of the problem of conduction of impulses in a network of connected excitable elements, specifically in cardiac muscle // Arch. Inst. Cardiologia de Mexico. 1946. No. 16. P. 205-265.

4. Klinicheskaya aritmologiya / pod red. A. V. Ardasheva. M. : ID Medpraktika, 2009. 1220 s.

5. Tabor M. Haos i integriruemost' v nelineynoy dinamike. M. :URSS, 2001. 331 s.

6. Shuster G. Determinirovannyy haos. Vvedenie. M. : Mir, 1988. 240 s.

7. Kolmogorov A. N. O sohranenii uslovno-periodicheskih resheniy pri malom izmenenii funkcii Gamil'tona // DAN SSSR. 1954. T. 98, № 4. S. 527-530.

8. Arnol'd V. I. Matematicheskie metody klassicheskoy mehaniki. M. : Nauka, 1989. S. 320-335.

9. Mozer Yu. KAM-teoriya i problemy ustoychivosti. Izhevsk : NIC «Regulyarnaya i haoticheskaya dinamika», 2001. 448 s.

10. Zhang H., Holden A. V., Boyett M. R. The pacemaking system of the heart : from coupled oscillanjr to nonliner waves // Nonliner Anal Theory Methods Appl. 1997. Vol. 30. P. 1019-1027.

11. Mazurov M. E. Ritmogenez v sinoatrial'nom uzle serdca // Biofizika. 2006. T. 51, № 6. S. 1092-1099.

12. Aldonin G. M. Nelineynye dinamicheskie modeli i strukturnyy analiz provodyaschey sistemy serdca // Uspehi sovremennoy radioelektroniki. 2012. № 9. C. 46-50.

13. Aldonin G. M., Cherepanov V. V., Yarygina O. L. Samoorganizaciya v sisteme svyazannyh nelineynyh oscillyatorov // Radiotehnika. 2013. № 6. S. 50-54.

14. Mandel'brot B. B. Fraktal'naya geometriya prirody. M. : Institut komp'yuternyh issledovaniy, 2002. 660 s.

15. Goldberger A. L., Rigney P. R., West B. J. Chaos and fractals in human physiology // Sci. Am. 1990. Vol. 262. P. 42-49.

16. Gel'mgol'c G. Skorost' rasprostraneniya nervnogo vozbuzhdeniya. M. : GIZ, 1923. 91 s.

17. Zabusky N. J., Kruskal M. D. Interaction of “Solitons” in a Collisionless Plasma and the Recurrence of Initial States // Physical Review Letters. 1965. Vol. 15. P. 240-243.

18. Soldatov A. V., Aldonin G. M., Cherepanov V. V. Wavelet Analysis of Cardiac Electrical Activity Signals // Biomedical Engineering. 2018. Vol. 52. Iss. 2. P. 120-124.

19. Aldonin G. M., Cherepanov V. V. Pat. 2723763 (RF). Sposob veyvlet-introskopii sosudistoy seti krovenosnogo rusla. Opubl. v B. I, 2020. № 17.


Login or Create
* Forgot password?