ON FORMS OF INTEGRAL AND INTEGRO-DIFFERENTIAL EQUATIONS OF VIBRATORY ANTENNAS AND CONVERGENCE OF ALGORITHMS
Abstract and keywords
Abstract (English):
For dipole (vibratory) antennas we consider the forms of integral equations, their transformations and how it effects on convergence. The optically pumped carbon nanotubes were studied numerically.

Keywords:
vibratory antenna, integral equations, CNT
Text
Text (PDF): Read Download
References

1. Pocklington H. C. Electrical Oscillations in Wires // Cambridge Phil. Soc. Proc. London. Oct. 1897. Vol. 9. P. 324-332.

2. Hallen E. Theoretical investigations into the transmitting and receiving qualities of antennæ // Nova Acta Regiae Soc. Sci. Upsaliensis. 1938. Vol. 11, ser. 4. P. 3-44.

3. Leontovich M., Levin M. On the theory of oscillations excitation in antenna’s vibrators // J. Tech. Phys. 1944. Vol. 14. P. 481-506.

4. Kapitsa P. L., Fok V. A., Vainshtein L. A. Symmetrical electrical oscillations of a perfectly conducting cylinder of finite length // J. Tech. Phys. 1959. Vol. 29, no. 10. P. 1188-1205.

5. Kapitsa P. L., Fok V. A., Vainshtein L. A. Static boundary problems for a hollow cylinder of finite length // J. Tech. Phys. 1959. Vol. 29, no.10, P. 1177-1187.

6. Vainshtein L. A. Current waves in a thin cylindrical conductor. I. Transmitting oscillator current and impedance // J. Tech. Phys. 1959. Vol. 29, no. 6. P. 673-700.

7. Vainshtein L. A. Current waves in a thin cylindrical conductor. II. The current in the passive vibrator and the radiation of the transmitting vibrator // J. Tech. Phys. 1959. Vol. 29, no. 6. P. 689-699.

8. Vainshtein L. A. Current waves in a thin cylindrical conductor. III. Variational method and its application to the theory of ideal and impedance wires // J. Tech. Phys. 1961. Vol. 31, no. 1. P. 29-44.

9. Vainshtein L. A. Current waves in a thin cylindrical conductor. IV. Oscillator input impedance and precision of formulas // J. Tech. Phys. 1961. Vol. 31, no. 1. P. 45-50.

10. Vainshtein L. A. Symmetrical electrical oscillations of a perfectly conducting hollow cylinder of finite length. II. Numerical results for passive vibrator // J. Tech. Phys. 1967. Vol. 37, no. 7. P. 1182-1188.

11. Vainshtein L. A., Fok V. A. Symmetrical electrical oscillations of a perfectly conducting hollow cylinder of finite length. III. The transmitting vibrator. General comments // J. Tech. Phys. 1967. Vol. 37, no. 7. P. 1189-1195.

12. Neganov V. A., Matveev I. V. Application of the singular integral equation for the calculation of a thin electric vibrator // Dokl. Acad. Nauk/ 2000. Vol. 373, no. 1. P. 36-38.

13. Neganov V. A., Kornev M. G., Matveev I. V. A new integral equation for calculating thin electric vibrators // Technical Physics Letters. 2001. Vol. 27, no. 2. P. 160-163.

14. Neganov V. A., Kluev D. S., Medvedev S. V. A functional for the input impedance of thin electric vibrator // Technical Physics Letters. 2001. Vol. 27, no. 11. P. 902-904.

15. Eminov S. I. The asymptotic calculation of dipole antennas // Tech. Phys. Lett. 2002. Vol. 28, no.3. P. 194-197.

16. Eminov S.I. Calculating impedance vibrator antennas // Technical Physics Letters. 2017. Vol. 43, no. 7. P. 593-595.

17. Eminov I., Sochilin A. V. A numerical-analytic method for solving integral equations of dipole antennas // J. of Comm. Tech. and Electronics. 2008. Vol. 53, no. 5. P. 523-528.

18. Davidovich M. V., Skobelev S. P. Analysis of some integral equations in the theory of wire antennas // Radiotekhnika (Moscow). 2014. No. 1. P. 106-109.

19. Davidovich M. V. Gap impedance characteristics for microstrip dipole patch antenna // Telecommunications and Radio Engineering. 1990. No. 6. P. 6872-6874.

20. Ryzhii V., Ryzhii M., Otsuji T. Negative dynamic conductivity of graphene with optical pumping // J. Appl. Phys. 2007. Vol. 101. P. 083114.

21. Hanson G. V. Fundamental Transmitting Properties of Carbon Nanotube Antennas // IEEE Trans. 2005. Vol. AP-53, no. 11. P. 3426-3435.

22. Burke P. J., Li S., Yu Z. Quantitative theory of nanowire and nanotube antenna performance // IEEE Trans. on nanotechnology. 2006. Vol. 5, no. 4. P. 314-334.

23. Fitchtner N., Zhou X., Russeret P. Investigation of copper and carbon nanotubes antennas using thin wire integral equations // IEEE APMC. 2007. DOI:https://doi.org/10.1109/APMC.2007.4554722.

24. Huang Y., Yin W.-Y., Liu Q. H. Performance predication of carbon nanotubes bundle dipole antenna // IEEE Trans. on nanotechnology. 2008. Vol. 7. P. 331-337.

25. Wang Y., Wu Q. Properties of terahertz wave generated by the metallic carbon nanotube antenna // Chinese optics letters. 2008. Vol. 6, iss. 10. P. 770-772.

26. Wu Q., Wang Y., Zhang S.-g, et al. Terahertz generation in the carbon nanotubes antenna // IEEE 2008 APMC. 2008. P. 978. DOI:https://doi.org/10.1109/APMC.2008.4958448.

27. Jornet J. M., Akyildiz I. Grapheme-based nano-antennas for electromagnetic nanocommunications in the terahertz band // Proceedings of the forth EuCAP, Barcelona. 2001. P. 1-5.

28. Choi S., Sarabandi K. Design of efficient terahertz antennas : CNT versus gold // APS, 2010. DOI:https://doi.org/10.1109/APS.2010.5560976.

29. Forati E., Mueller A. D., Yarandi P. G. et al. A New Formulation of Pocklington’s Equation for Thin Wires Using the Exact Kernel // IEEE Trans. 2011. Vol. AP-59, no. 11. P. 4355-4360.

30. El-Sherbiny Sh. G., Wageh S., Elhalafawy S. M. et al. Carbon nanotube antennas analysis and applications: review // Advances in Nano Research. 2013. Vol. 1, no. 1. P. 13-27.

31. Hertz H. The Forces of Electric Oscillations Treated according to Maxwell’s Theory // Nature. 1889. P. 402-404, 450-452.

32. Lakhtakia A., Slepyan G. Ya., Maksimenko S. A. et al. Effective medium theory of the microwave and the infrared properties of composites with carbon nanotube inclusions // Carbon. 1998. Vol. 36. P. 1833-1838.

33. Slepyan G. Ya., Maksimenko S. A., Lakhtakia A. et al. Electrodynamics of carbon nanotubes : Dynamic conductivity, impedance boundary conditions, and surface wave propagation // Phys. Rev. 1999. Vol. B 60. P. 17136-17149.

34. Davidovich M. V., Nefedov I. S. Spatiotemporal dispersion and waveguide properties of 2D-periodic metallic rod photonic crystals // JETP. 2014. Vol. 118, no. 5. P. 673-686.

35. Davidovich M. V. Iterative methods for solving electrodynamic problems. Saratov : Saratov University Publishing House, 2014. 240 p.

36. Davidovich M. V. Solution of three-dimensional Poisson equation for cylindrical magnetron // Radiotehnika i èlektronika. 1986. Vol. 31, no 11. P. 2224-2232.

37. Davidovich M. V. Localised plasmons in sphere-like fullerenes and nanoparticles with conducting shells : Classical electrodynamic approach // Quantum Electronics. 2019. Vol. 49, no. 9. P. 868-877.


Login or Create
* Forgot password?