For dipole (vibratory) antennas we consider the forms of integral equations, their transformations and how it effects on convergence. The optically pumped carbon nanotubes were studied numerically.
vibratory antenna, integral equations, CNT
1. Pocklington H. C. Electrical Oscillations in Wires // Cambridge Phil. Soc. Proc. London. Oct. 1897. Vol. 9. P. 324-332.
2. Hallen E. Theoretical investigations into the transmitting and receiving qualities of antennæ // Nova Acta Regiae Soc. Sci. Upsaliensis. 1938. Vol. 11, ser. 4. P. 3-44.
3. Leontovich M., Levin M. On the theory of oscillations excitation in antenna’s vibrators // J. Tech. Phys. 1944. Vol. 14. P. 481-506.
4. Kapitsa P. L., Fok V. A., Vainshtein L. A. Symmetrical electrical oscillations of a perfectly conducting cylinder of finite length // J. Tech. Phys. 1959. Vol. 29, no. 10. P. 1188-1205.
5. Kapitsa P. L., Fok V. A., Vainshtein L. A. Static boundary problems for a hollow cylinder of finite length // J. Tech. Phys. 1959. Vol. 29, no.10, P. 1177-1187.
6. Vainshtein L. A. Current waves in a thin cylindrical conductor. I. Transmitting oscillator current and impedance // J. Tech. Phys. 1959. Vol. 29, no. 6. P. 673-700.
7. Vainshtein L. A. Current waves in a thin cylindrical conductor. II. The current in the passive vibrator and the radiation of the transmitting vibrator // J. Tech. Phys. 1959. Vol. 29, no. 6. P. 689-699.
8. Vainshtein L. A. Current waves in a thin cylindrical conductor. III. Variational method and its application to the theory of ideal and impedance wires // J. Tech. Phys. 1961. Vol. 31, no. 1. P. 29-44.
9. Vainshtein L. A. Current waves in a thin cylindrical conductor. IV. Oscillator input impedance and precision of formulas // J. Tech. Phys. 1961. Vol. 31, no. 1. P. 45-50.
10. Vainshtein L. A. Symmetrical electrical oscillations of a perfectly conducting hollow cylinder of finite length. II. Numerical results for passive vibrator // J. Tech. Phys. 1967. Vol. 37, no. 7. P. 1182-1188.
11. Vainshtein L. A., Fok V. A. Symmetrical electrical oscillations of a perfectly conducting hollow cylinder of finite length. III. The transmitting vibrator. General comments // J. Tech. Phys. 1967. Vol. 37, no. 7. P. 1189-1195.
12. Neganov V. A., Matveev I. V. Application of the singular integral equation for the calculation of a thin electric vibrator // Dokl. Acad. Nauk/ 2000. Vol. 373, no. 1. P. 36-38.
13. Neganov V. A., Kornev M. G., Matveev I. V. A new integral equation for calculating thin electric vibrators // Technical Physics Letters. 2001. Vol. 27, no. 2. P. 160-163.
14. Neganov V. A., Kluev D. S., Medvedev S. V. A functional for the input impedance of thin electric vibrator // Technical Physics Letters. 2001. Vol. 27, no. 11. P. 902-904.
15. Eminov S. I. The asymptotic calculation of dipole antennas // Tech. Phys. Lett. 2002. Vol. 28, no.3. P. 194-197.
16. Eminov S.I. Calculating impedance vibrator antennas // Technical Physics Letters. 2017. Vol. 43, no. 7. P. 593-595.
17. Eminov I., Sochilin A. V. A numerical-analytic method for solving integral equations of dipole antennas // J. of Comm. Tech. and Electronics. 2008. Vol. 53, no. 5. P. 523-528.
18. Davidovich M. V., Skobelev S. P. Analysis of some integral equations in the theory of wire antennas // Radiotekhnika (Moscow). 2014. No. 1. P. 106-109.
19. Davidovich M. V. Gap impedance characteristics for microstrip dipole patch antenna // Telecommunications and Radio Engineering. 1990. No. 6. P. 6872-6874.
20. Ryzhii V., Ryzhii M., Otsuji T. Negative dynamic conductivity of graphene with optical pumping // J. Appl. Phys. 2007. Vol. 101. P. 083114.
21. Hanson G. V. Fundamental Transmitting Properties of Carbon Nanotube Antennas // IEEE Trans. 2005. Vol. AP-53, no. 11. P. 3426-3435.
22. Burke P. J., Li S., Yu Z. Quantitative theory of nanowire and nanotube antenna performance // IEEE Trans. on nanotechnology. 2006. Vol. 5, no. 4. P. 314-334.
23. Fitchtner N., Zhou X., Russeret P. Investigation of copper and carbon nanotubes antennas using thin wire integral equations // IEEE APMC. 2007. DOI:https://doi.org/10.1109/APMC.2007.4554722.
24. Huang Y., Yin W.-Y., Liu Q. H. Performance predication of carbon nanotubes bundle dipole antenna // IEEE Trans. on nanotechnology. 2008. Vol. 7. P. 331-337.
25. Wang Y., Wu Q. Properties of terahertz wave generated by the metallic carbon nanotube antenna // Chinese optics letters. 2008. Vol. 6, iss. 10. P. 770-772.
26. Wu Q., Wang Y., Zhang S.-g, et al. Terahertz generation in the carbon nanotubes antenna // IEEE 2008 APMC. 2008. P. 978. DOI:https://doi.org/10.1109/APMC.2008.4958448.
27. Jornet J. M., Akyildiz I. Grapheme-based nano-antennas for electromagnetic nanocommunications in the terahertz band // Proceedings of the forth EuCAP, Barcelona. 2001. P. 1-5.
28. Choi S., Sarabandi K. Design of efficient terahertz antennas : CNT versus gold // APS, 2010. DOI:https://doi.org/10.1109/APS.2010.5560976.
29. Forati E., Mueller A. D., Yarandi P. G. et al. A New Formulation of Pocklington’s Equation for Thin Wires Using the Exact Kernel // IEEE Trans. 2011. Vol. AP-59, no. 11. P. 4355-4360.
30. El-Sherbiny Sh. G., Wageh S., Elhalafawy S. M. et al. Carbon nanotube antennas analysis and applications: review // Advances in Nano Research. 2013. Vol. 1, no. 1. P. 13-27.
31. Hertz H. The Forces of Electric Oscillations Treated according to Maxwell’s Theory // Nature. 1889. P. 402-404, 450-452.
32. Lakhtakia A., Slepyan G. Ya., Maksimenko S. A. et al. Effective medium theory of the microwave and the infrared properties of composites with carbon nanotube inclusions // Carbon. 1998. Vol. 36. P. 1833-1838.
33. Slepyan G. Ya., Maksimenko S. A., Lakhtakia A. et al. Electrodynamics of carbon nanotubes : Dynamic conductivity, impedance boundary conditions, and surface wave propagation // Phys. Rev. 1999. Vol. B 60. P. 17136-17149.
34. Davidovich M. V., Nefedov I. S. Spatiotemporal dispersion and waveguide properties of 2D-periodic metallic rod photonic crystals // JETP. 2014. Vol. 118, no. 5. P. 673-686.
35. Davidovich M. V. Iterative methods for solving electrodynamic problems. Saratov : Saratov University Publishing House, 2014. 240 p.
36. Davidovich M. V. Solution of three-dimensional Poisson equation for cylindrical magnetron // Radiotehnika i èlektronika. 1986. Vol. 31, no 11. P. 2224-2232.
37. Davidovich M. V. Localised plasmons in sphere-like fullerenes and nanoparticles with conducting shells : Classical electrodynamic approach // Quantum Electronics. 2019. Vol. 49, no. 9. P. 868-877.