Wuhu, Anhui, China
Wuhu, Anhui, China
Wuhu, Anhui, China
Wuhu, Anhui, China
Wuhu, Anhui, China
Wuhu, Anhui, China
A novel small-scale biomass gasification system assisted by a non-thermal air arc plasma is introduced in this paper and the gasification experiment setup, procedure and gasification results are described in detail. The results show that the production of syngas (CO and H2) is in the range of 1.14 Nm3/h to 1.46 Nm3/h during the system normal operation at plasma power consumption 120 W and biomass feed rate 3360 g/h, and the volume fraction of syngas in produced gas is in the range of 20.2% to 23.89%. The maximum cold gasification efficiency is 44.56% and the minimum specific energy consumption (defined as the ratio of plasma power consumption to the heat power content of the produced gas) of the gasification system is 2.18%, which is much lower than that of gasification system with thermal plasma.
biomass, non-thermal plasma, gasification
1. Y. A. Situmorang, Z. K. Zhao, A. Yoshida, A. Abudula, G. Q. Guan, “Small-scale biomass gasification systems for power generation (<200 kW class): A review,” Renew. Sust. Energ. Rev. vol. 117, no. 109486, 2020, doi:https://doi.org/10.1016/j.rser.2019.109486.
2. A. A. Ahmad, N. A. Zawawi, F. H. Kasim, A. Inayat, and A. Khasri, “Assessing the gasifica-tion performance of biomass: A review on biomass gasification process conditions, optimiza-tion and economic evaluation,” Renewable and Sustainable Energy Reviews, vol. 53, pp. 1333-1347, Jan. 2016, doi:https://doi.org/10.1016/j.rser.2015.09.030.
3. G. S. J. Sturm, A. N. Munoz, P. V. Aravind, and G. D. Stefanidis, “Microwave-Driven Plasma Gasification for Biomass Waste Treatment at Miniature Scale,” IEEE Transactions on Plasma Science, vol. 44, no. 4, pp. 670-678, Apr. 2016, doi:https://doi.org/10.1109/tps.2016.2533363.
4. E. Delikonstantis et al., “Biomass gasification in microwave plasma: An experimental feasibil-ity study with a side stream from a fermentation reactor,” Chemical Engineering and Pro-cessing - Process Intensification, vol. 141, p. 107538, Jul. 2019, doi:https://doi.org/10.1016/j.cep.2019.107538.
5. Y.-C. Lin, T.-Y. Wu, S.-R. Jhang, P.-M. Yang, and Y.-H. Hsiao, “Hydrogen production from banyan leaves using an atmospheric-pressure microwave plasma reactor,” Bioresource Technology, vol. 161, pp. 304-309, Jun. 2014, doi:https://doi.org/10.1016/j.biortech.2014.03.067.
6. V. Grigaitienė, V. Snapkauskienė, P. Valatkevičius, A. Tamošiūnas, and V. Valinčius, “Water vapor plasma technology for biomass conversion to synthetic gas,” Catalysis Today, vol. 167, no. 1, pp. 135-140, Jun. 2011, doi:https://doi.org/10.1016/j.cattod.2010.12.029.
7. J.-L. Shie, F.-J. Tsou, and K.-L. Lin, “Steam plasmatron gasification of distillers grains resi-due from ethanol production,” Bioresource Technology, vol. 101, no. 14, pp. 5571-5577, Jul. 2010, doi:https://doi.org/10.1016/j.biortech.2010.01.118.
8. P.-C. Kuo, B. Illathukandy, W. Wu, and J.-S. Chang, “Plasma gasification performances of various raw and torrefied biomass materials using different gasifying agents,” Bioresource Technology, vol. 314, p. 123740, Oct. 2020, doi:https://doi.org/10.1016/j.biortech.2020.123740.
9. I. Janajreh, S. S. Raza, and A. S. Valmundsson, “Plasma gasification process: Modeling, simulation and comparison with conventional air gasification,” Energy Conversion and Man-agement, vol. 65, pp. 801-809, Jan. 2013, doi:https://doi.org/10.1016/j.enconman.2012.03.010.
10. G. Ni et al., “Alternating current-driven non-thermal arc plasma torch working with air medi-um at atmospheric pressure,” Journal of Physics D: Applied Physics, vol. 46, no. 45, p. 455204, Oct. 2013, doi:https://doi.org/10.1088/0022-3727/46/45/455204.
11. J. Luche et al., “Plasma Treatments and Biomass Gasification,” IOP Conference Series: Mate-rials Science and Engineering, vol. 29, p. 012011, Feb. 2012, doi:https://doi.org/10.1088/1757-899x/29/1/012011.
12. S. A. Nair et al., “Tar removal from biomass-derived fuel gas by pulsed corona discharges,” Fuel Processing Technology, vol. 84, no. 1-3, pp. 161-173, Nov. 2003, doi:https://doi.org/10.1016/s0378-3820(03)00053-5.
13. A. A. Fridman, Plasma chemistry. Cambridge ; New York: Cambridge University Press, pp. 1-11, 2008.
14. L. Waldheim and T. Nilsson, Heating value of gases from biomass gasification, IEA bioenergy agreement subcommittee on thermal gasification of biomass, 2001. URL: http://gasificationofbiomass.org/download.php?file=files/file/publications/HeatingValue.pdf.
15. D. Chen, H. P. Rebo, A. Grønvold, K. Moljord, and A. Holmen, “Methanol conversion to light olefins over SAPO-34: kinetic modeling of coke formation,” Microporous and Mesopo-rous Materials, vol. 35-36, pp. 121-135, Apr. 2000, doi:https://doi.org/10.1016/s1387-1811(99)00213-9.
16. Y. Zhang, S. Kajitani, M. Ashizawa, and Y. Oki, “Tar destruction and coke formation during rapid pyrolysis and gasification of biomass in a drop-tube furnace,” Fuel, vol. 89, no. 2, pp. 302-309, Feb. 2010, doi:https://doi.org/10.1016/j.fuel.2009.08.045.
17. C. Du, J. Mo, and H. Li, “Renewable Hydrogen Production by Alcohols Reforming Using Plasma and Plasma-Catalytic Technologies: Challenges and Opportunities,” Chemical Reviews, vol. 115, no. 3, pp. 1503-1542, Dec. 2014, doi:https://doi.org/10.1021/cr5003744.