Nauchni, Simferopol, Russian Federation
Nauchni, Simferopol, Russian Federation
Town Scientific, Simferopol, Russian Federation
In this paper, we discuss the results of the analysis of time series of measurements from outer space of local temperatures of the surface of the earth and air at a height of 2 meters, as well as the general insolation of the earth falling on the surface at Kara-Dag over the past 38 years. Mutual correlations were established between the analyzed sequences of local measurements and changes in the length of the day, the number of sunspots, and the indices of changes in global temperature by calculating the functions of the mutual (two-channel) power spectral density.
solar insolation, temperature of the Earth’s surface, wavelet analysis, coherent oscillations, model
1. G. S. Kurbasova and A. E. Volvach, “The insolation anomalies on the Crimean peninsula with observations from space,” 24th Intern. Crimean Conf. “Microwave and telecommunication technology” - CriMiCo’2014 (Sevastopol, September 7-13, 2014), pp. 1085-1086, 2014. (In Russ.).
2. G. S. Kurbasova and A. E. Volvach, “Wavelet analysis for ground-based and space measurements of local insolation,” Kosmìčna nauka ì tehnologìâ, vol. 20, no. 4(89), pp. 42-49, Jul. 2014, doi:https://doi.org/10.15407/knit2014.04.042. (In Russ.).
3. G. S. Kurbasova, A. E. Volvach, and L. N. Volvach, “Astronomical Cycles in the Climatic and Geophysical Characteristics of Crimea,” Cosmic Research, vol. 57, no. 4, pp. 243-251, Jul. 2019, doi:https://doi.org/10.1134/s001095251904004x.
4. A. Volvach, G. Kurbasova, and L. Volvach, “Time series analysis of temperatures and insolation of the Earth’s surface at Kara-Dag using satellite observation,” Advances in Space Research, vol. 69, no. 12, pp. 4228-4239, Jun. 2022, doi:https://doi.org/10.1016/j.asr.2022.04.016.
5. I. Daubechies, “Orthonormal bases of compactly supported wavelets,” Communications on Pure and Applied Mathematics, vol. 41, no. 7, pp. 909-996, Oct. 1988, doi:https://doi.org/10.1002/cpa.3160410705.
6. I. Daubechies, “The wavelet transform, time-frequency localization and signal analysis,” IEEE Transactions on Information Theory, vol. 36, no. 5, pp. 961-1005, 1990, doi:https://doi.org/10.1109/18.57199.
7. I. Daubechies, Ten Lectures on Wavelets Society for Industrial and Applied Mathematics, Philadelphia, Pennsylvania, 1992.
8. A. E. Volvach, G. S. Kurbasova, and L. N. Volvach, “Analyis of periodical variability of insolation and soil temperature in the Crimea,” Geofizicheskiy Zhurnal, vol. 41, no. 6, pp. 195-202, Dec. 2019, doi:https://doi.org/10.24028/gzh.0203-3100.v41i6.2019.190076.
9. A. Volvach and G. Kurbasova, “Model of Insolation of the Earth Surface in the Kara-Dag Locality According to SSE Data,” Visnyk of Taras Shevchenko National University of Kyiv. Geology, no. 2 (85), pp. 51-58, 2019, doi:https://doi.org/10.17721/1728-2713.85.07.
10. A. E. Volvach, G. S. Kurbasova, and L. N. Volvach, “Solar-Terrestrial Cycles in the Climatic and Geophysical Properties of Crimea,” Astrophysical Bulletin, vol. 74, no. 3, pp. 331-336, Jul. 2019, doi:https://doi.org/10.1134/s1990341319030118.
11. A. E. Volvach and G. S. Kurbasova, “Secular variations of geomagnetic declination in the Karadag point and the global helio-geodynamic processes,” Geofizicheskiy Zhurnal, vol. 41, no. 1, pp. 192-199, Mar. 2019, doi:https://doi.org/10.24028/gzh.0203-3100.v41i1.2019.158873.
12. M. Greff-Lefftz, “Core Rotational Dynamics and Geological Events,” Science, vol. 286, no. 5445, pp. 1707-1709, Nov. 1999, doi:https://doi.org/10.1126/science.286.5445.1707.