Hyperion Ltd
Moscow, Moscow, Russian Federation
Moscow, Moscow, Russian Federation
RUDN University
RTM Diagnostic, LLC
Moscow, Moscow, Russian Federation
RUDN University
MIREA - Russian Technological University
Moscow, Moscow, Russian Federation
CNIRTI, JSC
Moscow, Moscow, Russian Federation
RUDN University
Moscow, Moscow, Russian Federation
Moscow, Moscow, Russian Federation
Moscow, Moscow, Russian Federation
An overview of the state of antennas development of various types used in medical microwave radiothermographs is given. The problems of modern microwave radiothermometry associated with the development of new antennas are formulated. The tasks of further research aimed at creating new designs of conformal antennas and antenna arrays aimed at improving the characteristics and expanding the functionality of medical radiothermographs are formulated.
microwave radiometry, radiobrightness temperature, applicator antenna
1. M. K. Sedankin, Antenna-applicators for radiothermometric study of thermal fields of internal tissues of a biological object: diss. ... cand. tech. sci. Moscow: 2013. (In Russ.).
2. S. Jacobsen and P. R. Stauffer, “Multifrequency radiometric determination of temperature profiles in a lossy homogeneous phantom using a dual-mode antenna with integral water bolus,” IEEE Transactions on Microwave Theory and Techniques, vol. 50, no. 7, pp. 1737-1746, Jul. 2002, doi:https://doi.org/10.1109/tmtt.2002.800424.
3. O. Klemetsen and S. Jacobsen, “Improved Radiometric Performance Attained by an Elliptical Microwave Antenna With Suction,” IEEE Transactions on Biomedical Engineering, vol. 59, no. 1, pp. 263-271, Jan. 2012, doi:https://doi.org/10.1109/tbme.2011.2172441.
4. F. Bardati and S. Iudicello, “Modeling the Visibility of Breast Malignancy by a Microwave Radiometer,” IEEE Transactions on Biomedical Engineering, vol. 55, no. 1, pp. 214-221, Jan. 2008, doi:https://doi.org/10.1109/tbme.2007.899354.
5. C. Beaucamp-Ricard, L. Dubois, S. Vaucher, P.-Y. . Cresson, T. Lasri, and J. Pribetich, “Temperature Measurement by Microwave Radiometry: Application to Microwave Sintering,” IEEE Transactions on Instrumentation and Measurement, vol. 58, no. 5, pp. 1712-1719, May 2009, doi:https://doi.org/10.1109/tim.2008.2009189.
6. S. G. Vesnin and M. K. Sedankin, “Mathematical modeling of self-radiation of human tissues in the microwave range,” Biomeditsinskaya radioelektronika, no. 9. pp. 33-43, 2010. (In Russ.).
7. S. G. Vesnin and M. K. Sedankin, “Miniature applicator antennas for medical microwave radiothermometers,” Biomeditsinskaya radioelektronika, no. 10, pp. 51-55, 2011. (In Russ.).
8. S. G. Vesnin and M. K. Sedankin, “Comparison of antenna-applicators for medical purposes,” Biomeditsinskaya radioelektronika, no. 10, pp. 63-74, 2012. (In Russ.).
9. S. G. Vesnin and M. K. Sedankin, “Development of a series of antenna-applicators for non-invasive measurement of the temperature of human tissues in various pathologies,” Vestnik MGTU n. a. N. E. Bauman. Yestestvennyye nauki, special iss. 6, pp. 43-61, 2012. (In Russ.).
10. J. W. Hand et al., “Monitoring of deep brain temperature in infants using multi-frequency microwave radiometry and thermal modelling,” Physics in Medicine and Biology, vol. 46, no. 7, pp. 1885-1903, Jun. 2001, doi:https://doi.org/10.1088/0031-9155/46/7/311.
11. M. K. Sedankin et al., “Antennas-applicators for medical microwave radiothermographs,” Meditsinskaya tekhnika, no. 4 (310), pp. 13-15, 2018. (In Russ.).
12. V. S. Troitskii, “Theory of contact radiometric measurement of internal temperatures of bodies,” Radiophysics and Quantum Electronics, vol. 24, no. 9, pp. 717-722, Sep. 1981, doi:https://doi.org/10.1007/bf01035924.
13. S. G.Vesnin, M. K.Sedankin, and D. N. Chupina, “Application of modern technologies of mathematical simulation for the development of medical equipment,” 11th IEEE Inter. Conference on AICT, Sept. 20-22, Moscow, Russia, pp. 425-429, 2017.
14. A. H. Barrett and P. C. Myers, “Subcutaneous Temperatures: A Method of Noninvasive Sensing,” Science, vol. 190, no. 4215, pp. 669-671, Nov. 1975, doi:https://doi.org/10.1126/science.1188361.
15. A. Barrett, P. Myers, and N. Sadowsky, “Microwave thermography in the detection of breast cancer,” American Journal of Roentgenology, vol. 134, no. 2, pp. 365-368, Feb. 1980, doi:https://doi.org/10.2214/ajr.134.2.365.
16. P. C. Myers, N. L. Sadowsky, and A. H. Barrett, “Microwave Thermography: Principles, Methods and Clinical Applications*,” Journal of Microwave Power, vol. 14, no. 2, pp. 105-115, Jan. 1979, doi:https://doi.org/10.1080/16070658.1979.11689136.
17. E. A. Cheever and K. R. Foster, “Microwave radiometry in living tissue: what does it measure?,” IEEE Transactions on Biomedical Engineering, vol. 39, no. 6, pp. 563-568, Jun. 1992, doi:https://doi.org/10.1109/10.141194.
18. K. Carr, Patent (USA) 5779635. Microwave detection apparatus for locating cancerous tumors particularly breast tumors. 14 July 1998.
19. J. W. Lee et al., “Experimental investigation of the mammary gland tumour phantom for multifrequency microwave radio-thermometers,” Medical & Biological Engineering & Computing, vol. 42, no. 5, pp. 581-590, Sep. 2004, doi:https://doi.org/10.1007/bf02347538.
20. M. Tofighi, “Characterization of biomedical antennas for microwave heating, radiometry, and implant communication applications,” 12th Wireless and Microwave Technology Conference (WAMICONP), Clearwater Beach, pp. 1-6, 2011.
21. V. S. Kublanov et al. Pat. no. 2049424 (RF). Device for receiving own radio-thermal radiation of the human body. Published in Bulletin of Inventions, no. 34, 1995. (In Russ.).
22. O. Klemetsen and S. Jacobsen, “Improved Radiometric Performance Attained by an Elliptical Microwave Antenna With Suction,” IEEE Transactions on Biomedical Engineering, vol. 59, no. 1, pp. 263-271, Jan. 2012, doi:https://doi.org/10.1109/tbme.2011.2172441.
23. S. Iudicello, Microwave radiometry for breast cancer detection: PhD thesis, Universita’ deglistudi tor vergata Roma, dipartimento di informatica, sistemi e produzione geoinformation research doctorate, Rome. 2009.
24. F. Bardati et al., Improved antennas for microwave radiometry, URL: http://www.ursi.org (20.01.2020).
25. F. Bardati et al., A three-band antenna for microwave radiometry of breast, URL: http://www.ursi.org (20.01.2020).
26. A. Oikonomou, I. S. Karanasiou, and N. K. Uzunoglu, “Phased-Array Near Field Radiometry for brain intracranial applications,” Progress In Electromagnetics Research, vol. 109, pp. 345-360, 2010, doi:https://doi.org/10.2528/pier10073004.
27. N. P. Asimakis, I. S. Karanasiou, and N. K. Uzunoglu, “Non-Invasive Microwave Radiometric System for Intracranial Applications: a Study Using the Conformal L-Notch Microstrip Patch Antenna,” Progress In Electromagnetics Research, vol. 117, pp. 83-101, 2011, doi:https://doi.org/10.2528/pier10122208.
28. N. P. Asimakis, I. S. Karanasiou, and N. K. Uzunoglu, “Conformal L-notch patch antennas for human brain monitoring using the SAM head model,” Electromagnetics in Advanced Applications, Torino, pp. 214-217, 2009.
29. N. P. Asimakis, I. S. Karanasiou, and N. K. Uzunoglu, “Multiband conformal patch an-tennas for diagnosis in human brain using near field radiometry,” 6th European Symposium on Biomedical Engineering, pp. 1-4, 2008.
30. A. Oikonomou, I. S. Karanasiou, and N. K. Uzunoglu, “Potential brain imaging using near field radiomety,” Journal of Instrumentation, vol. 4, no. 05, pp. P05017-P05017, May 2009, doi:https://doi.org/10.1088/1748-0221/4/05/p05017.
31. S. Jacobsen, “Microwave radiometry as a non-invasive temperature monitoring modality during superficial hyperthermia,” URL: http://cdn.intechopen.com/ pdfs/17007 /InTech-Non _invasive_temperature_monitoring_during_microwave_heating_applying_a_miniaturized_radiometer.pdf (02.02.2013).
32. S. Jacobsen, H. O. Rolfsnes, and P. R. Stauffer, “Characteristics of Microstrip Muscle-Loaded Single-Arm Archimedean Spiral Antennas as Investigated by FDTD Numerical Computations,” IEEE Transactions on Biomedical Engineering, vol. 52, no. 2, pp. 321-330, Feb. 2005, doi:https://doi.org/10.1109/tbme.2004.840502.
33. S. Jacobsen and A. M. P. R. Stauffer, “Characterization of a Tranceiving Antenna Concept for Microwave Heating and Thermometry of Superficial Tumors,” Progress In Electromagnetics Research, vol. 18, pp. 105-125, 1998, doi:https://doi.org/10.2528/pier97050600.
34. S. Jacobsen and P. R. Stauffer, “Can we settle with single-band radiometric temperature monitoring during hyperthermia treatment of chestwall recurrence of breast cancer using a dual-mode transceiving applicator?,” Physics in Medicine and Biology, vol. 52, no. 4, pp. 911-928, Jan. 2007, doi:https://doi.org/10.1088/0031-9155/52/4/004.
35. A. Sunal et al., “Design of spiral antennas for radiometric detection of tumors at microwave frequencies,” Bioengineering Conference. Proceedings of the IEEE 32nd Annual Northeast. Easton (Pennsylvania), pp. 99-100, 2006.
36. P. R. Stauffer et al., “Stable microwave radiometry system for long term monitoring of deep tissue temperature,” Energy based Treatment of Tissue and Assessment VII. - International Society for Optics and Photonics, vol. 8584, p. 85840R, 2013.
37. K. Arunachalam, P. F. Maccarini, V. De Luca, F. Bardati, B. W. Snow, and P. R. Stauffer, “Modeling the detectability of vesicoureteral reflux using microwave radiometry,” Physics in Medicine and Biology, vol. 55, no. 18, pp. 5417-5435, Aug. 2010, doi:https://doi.org/10.1088/0031-9155/55/18/010.
38. P. Stauffer et al., “Microwave radiometry for non-invasive detection of vesicoureteral reflux (VUR) following bladder warming,” Proc. SPIE, vol. 7901, p. 79010V, 2011.
39. P. R. Stauffer et al., “Non-Invasive Measurement of Brain Temperature with Microwave Radiometry: Demonstration in a Head Phantom and Clinical Case,” The Neuroradiology Journal, vol. 27, no. 1, pp. 3-12, Feb. 2014, doi:https://doi.org/10.15274/nrj-2014-10001.
40. C. Vanoverschelde et al., “Miniature sensor for measurement and control of temperatures by microwave radiometry in medical applications,” Microwave Symposium Digest, IEEE MTT-S International. Phoenix (Arizona), vol. 1, pp. 155-158, 2001.
41. L. Dubois et al., “Contact-less sensors for temperature measurement by microwave radiometry in medical or industrial applications,” Proceedings of ISAP. Niigata (Japan), pp. 1262-1265, 2007.
42. C. Beaucamp-Ricard, L. Dubois, S. Vaucher, P.-Y. . Cresson, T. Lasri, and J. Pribetich, “Temperature Measurement by Microwave Radiometry: Application to Microwave Sintering,” IEEE Transactions on Instrumentation and Measurement, vol. 58, no. 5, pp. 1712-1719, May 2009, doi:https://doi.org/10.1109/tim.2008.2009189.
43. P.-Y. Cresson et. al., “Temperature measurement by microwave radiometry,” IEEE International Instrumentation and Measurement Technology Conference. Victoria (Vancouver Island, Canada), pp. 1344-1349, 2008.
44. M. R. Tofighi, “Dual-mode planar applicator for simultaneous microwave heating and radiometric sensing,” Electronics Letters, vol. 48, no. 20, p. 1252, 2012, doi:https://doi.org/10.1049/el.2012.2711.
45. E. A. Tsomaeva, Clinical significance of radiothermometry in the diagnosis and differential diagnosis of diseases of the pelvic organs: authoref. diss. ... cand. med. nauk. Moscow, 2012. (In Russ.).
46. J. Rodrigues, J. Caldeira, and B. Vaidya, “A Novel Intra-body Sensor for Vaginal Temperature Monitoring,” Sensors, vol. 9, no. 4, pp. 2797-2808, Apr. 2009, doi:https://doi.org/10.3390/s90402797.
47. J. M. L. P. Caldeira et al., “Intra-body temperature monitoring using a biofeedback solution,” 2010 Second International Conference on eHealth, Telemedicine, and Social Medicine, IEEE, pp. 119-124, 2010.
48. J. M. L. P. Caldeira, J. J. P. C. Rodrigues, J. F. R. Garcia, and I. de la Torre, “A New Wireless Biosensor for Intra-Vaginal Temperature Monitoring,” Sensors, vol. 10, no. 11, pp. 10314-10327, Nov. 2010, doi:https://doi.org/10.3390/s101110314.
49. O. R. E. Pereira, J. M. L. P. Caldeira, and J. J. P. C. Rodrigues, “A Symbian-based mobile solution for intra-body temperature monitoring,” The 12th IEEE International Conference on e-Health Networking, Applications and Services, IEEE, pp. 316-321, 2010.
50. V. L. Rakhlin and S. E. Alova, Radiothermometry in the diagnosis of pathology of the mammary glands, genitals, prostate and spine. Gorky: NIRFI, 1988. (In Russ.).
51. A. Z. Khashukoeva, E. A. Tsomaeva, and N. D. Vodyanik, “The use of transabdominal and vaginal radiothermometry in the complex diagnosis of inflammatory diseases of the uterine appendages,” Lecheniye i profilaktika, no. 1, pp. 26-30, 2012. (In Russ.).
52. M. K. Sedankin and M. V. Martyanova, “Intracavitary antennas for diagnosing diseases of the human body using radiothermometry,” Russian Scientific and Technical Conference with International Participation. Informatics and technology. Innovative technologies in industry and informatics. Moscow, pp. 442-445, 2019. (In Russ.).
53. M. K. Sedankin et al., “Microwave Radiometry of the Pelvic Organs,” Biomedical Engineering, vol. 53, no. 4, pp. 288-292, Nov. 2019, doi:https://doi.org/10.1007/s10527-019-09928-7.
54. M. K. Sedankin et al., Mathematical modeling of radiothermal radiation of the pelvic organs,” Scientific and technical bulletin of the Volga region, no. 10, pp. 148-151, 2018. (In Russ.).
55. M. K. Sedankin, A. A. Novov, and E. R. Abidulin, “Three-channel microwave antenna for urology,” International Scientific and Technical Conference “Information and Technology. Innovative technologies in industry and informatics” (MNTK FTI-2017), ed. M. F. Bulatova, pp. 289-291, 2017. (In Russ.).
56. M. K. Sedankin et al., “Modeling of Thermal Radiation by the Kidney in the Microwave Range,” Biomedical Engineering, vol. 53, no. 1, pp. 60-65, May 2019, doi:https://doi.org/10.1007/s10527-019-09878-0.
57. ►M. K. Sedankin et al., “Antenna Applicators for Medical Microwave Radiometers,” Biomedical Engineering, vol. 52, no. 4, pp. 235-238, Nov. 2018, doi:https://doi.org/10.1007/s10527-018-9820-1.
58. S. G. Vesnin et al., “A Printed Antenna with an Infrared Temperature Sensor for a Medical Multichannel Microwave Radiometer,” Biomedical Engineering, vol. 54, no. 4, pp. 235-239, Nov. 2020, doi:https://doi.org/10.1007/s10527-020-10011-9.
59. S. G. Vesnin and S. V. Zinoviev, Method of microwave dynamic topometry of the primary focus of malignant neoplasms,” Sibirskiy onkologicheskiy zhurnal, app. no. 2, pp. 80, 2009. (In Russ.).
60. M. K. Sedankin et al., “System of rational parameters of antennas for designing a multi-channel multi-frequency medical radiometer,” 2020 International Conference on Actual Problems of Electron Devices Engineering (APEDE). IEEE, pp. 154-159, 2020.
61. A. G. Gudkov et al., “Use of Multichannel Microwave Radiometry for Functional Diagnostics of the Brain,” Biomedical Engineering, vol. 53, no. 2, pp. 108-111, Jul. 2019, doi:https://doi.org/10.1007/s10527-019-09887-z.
62. N. S.Tarkhov and I. V. Trokhina, “Antenna-applicators for radiothermometry,” Bulletin of the Tula State University. Technical science, no. 11, pp. 30-40, 2012. (In Russ.).
63. V. A. Elkin et al., “Applicator microwave antennas for functional biomedical and physical research,” Int. conf. “Modern problems of electronics and microwave radiophysics,” Saratov, pp. 55-57, March 20-24, 2001. (In Russ.).
64. I. V. Semernik, A. V. Demyanenko, and Y. V. Nevstruev, “Development of a broadband microwave applicator for a device for diagnosing bronchopulmonary diseases,” 28th International Crimean Conference “Microwave and Telecommunication Technology” (CriMiCo’2018), pp. 1487-1493, 2018. (In Russ.).
65. Yu. E. Sedelnikov, D. V. Nikishina, and K. N. Khalikova, Pat. No. 2562025 (RF). Antenna-applicator for non-invasive temperature measurement of the internal tissues of a biological object. Published in Bulletin of Inventions, no. 14, 2015. (In Russ.).
66. O. A. Morozov et al. Patent (RF) No. 2737017 C1. Antenna-applicator for high-resolution radiothermometry. Published in Bulletin of Inventions, no. 33, 2020. (In Russ.).
67. I. A. Bannikov et al., “Analysis of the properties of a vibrator antenna-applicator in the problem of brain radiometry,” 2nd International Conference of Students, Postgraduates and Young Scientists “Information Technologies, Telecommunications and Control Systems,” Ekaterinburg, pp. 172-179, 2016. (In Russ.).
68. E. P. Shabashov, S. N. Shabunin, and B. Mrdakovich, “Modeling and analysis of the properties of a helical antenna for studying brain radiation in the microwave range,” Ural Radio Engineering Journal, vol. 4, no 1, pp. 84-99, 2020. (In Russ.).
69. Yu. E. Sedelnikov, V. S. Kublanov, and O. V. Potapova, “Focused applicator antennas in problems of diagnostic radiothermometry,” Zhurnal radioelektroniki, no. 7, 2018. URL: http://jre.cplire.ru/jre/jul18/4/text.pdf. (In Russ.).
70. H. Abufanas et al., “New approach for design and verification of a wideband Archimedean spiral antenna for radiometric measurement in biomedical applications,” 2015 German Microwave Conference. IEEE, pp. 127-130, 2015.
71. K. Arunachalam et al., “Detection of Vesicoureteral Reflux Using Microwave Radiome-try-System Characterization With Tissue Phantoms,” IEEE Transactions on Biomedical Engineering, vol. 58, no. 6, pp. 1629-1636, Jun. 2011, doi:https://doi.org/10.1109/tbme.2011.2107515.
72. Y. Birkelund, O. Klemetsen, S. K. Jacobsen, K. Arunachalam, P. Maccarini, and P. R. Stauffer, “Vesicoureteral Reflux in Children: A Phantom Study of Microwave Heating and Radiometric Thermometry of Pediatric Bladder,” IEEE Transactions on Biomedical Engineering, vol. 58, no. 11, pp. 3269-3278, Nov. 2011, doi:https://doi.org/10.1109/tbme.2011.2167148.
73. N.-A. Livanos et al., “Design and Interdisciplinary Simulations of a Hand-Held Device for Internal-Body Temperature Sensing Using Microwave Radiometry,” IEEE Sensors Journal, vol. 18, no. 6, pp. 2421-2433, Mar. 2018, doi:https://doi.org/10.1109/jsen.2018.2791443.
74. A. Afyf et al., “Flexible antenna array for early breast cancer detection using radiometric technique,” Int. J. Biol. Biomed. Eng., vol. 10, pp. 10-17, 2016.
75. E. Groumpas et al., “Sensing local temperature and conductivity changes in a brain phantom using near-field microwave radiometry,” 2017 International Workshop on Antenna Technology : Small Antennas, Innovative Structures, and Applications (iWAT). IEEE, pp. 293-295, 2017.
76. V. Leushin et al., “Numerical simulation of miniature antennas applicators of microwave radiometry for diagnostics of the functional state of the brain,” ITM Web of Conferences. EDP Sciences, vol. 30, p. 13005, 2019.
77. M. Koutsoupidou et al., “A microwave breast imaging system using elliptical uniplanar antennas in a circular-array setup,” 2015 IEEE International Conference on Imaging Systems and Techniques (IST), IEEE, pp. 1-4, 2015.
78. P. Momenroodaki, W. Haines, M. Fromandi, and Z. Popovic, “Noninvasive Internal Body Temperature Tracking With Near-Field Microwave Radiometry,” IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 5, pp. 2535-2545, May 2018, doi:https://doi.org/10.1109/tmtt.2017.2776952.
79. P. Momenroodaki, W. Haines, and Z. Popović, “Non-invasive microwave thermometry of multilayer human tissues,” 2017 IEEE MTT-S International Microwave Symposium (IMS), IEEE, pp. 1387-1390, 2017.
80. Ø. Klemetsen, S. Jacobsen, and Y. Birkelund, “Radiometric temperature reading of a hot ellipsoidal object inside the oral cavity by a shielded microwave antenna put flush to the cheek ,” Physics in Medicine & Biology, vol. 57, no. 9, pp. 2633-2652, 2012.
81. D. B. Rodrigues, P. R. Stauffer, and P. F. Maccarini, “Monitoring brown fat metabolic activity using microwave radiometry: antenna design and frequency selection,” 2014 IEEE Benjamin Franklin Symposium on Microwave and Antenna Subsystems for Radar, Telecommunications, and Biomedical Applications (BenMAS), IEEE, pp. 1-3, 2014.
82. G. León, L. F. Herrán, I. Mateos, E. Villa, and J. B. Ruiz-Alzola, “Wideband Epidermal Antenna for Medical Radiometry,” Sensors, vol. 20, no. 7, p. 1987, Apr. 2020, doi:https://doi.org/10.3390/s20071987.
83. M.-R. Tofighi and J. R. Pardeshi, “Interference Enhanced Biomedical Antenna for Combined Heating and Radiometry Application,” IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 1895-1898, 2017, doi:https://doi.org/10.1109/lawp.2017.2685503.
84. H. Ullah et al., “A Wearable Radiometric Antenna for Non-Invasive Brain Temperature Monitoring,” 2018 18th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM), IEEE, pp. 1-2, 2018.
85. R. Warty, M.-R. Tofighi, U. Kawoos, and A. Rosen, “Characterization of Implantable Antennas for Intracranial Pressure Monitoring: Reflection by and Transmission Through a Scalp Phantom,” IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 10, pp. 2366-2376, Oct. 2008, doi:https://doi.org/10.1109/tmtt.2008.2004254.
86. V. Slyusar, “Metamaterials in antenna technology: basic principles and results,” Pervaya Milya, no. 3-4, pp. 44-60, 2010. (In Russ.).
87. B. Osmonov et al., “Passive Microwave Radiometry for the Diagnosis of Coronavirus Disease 2019 Lung Complications in Kyrgyzstan,” Diagnostics, vol. 11, no. 2, p. 259, Feb. 2021, doi:https://doi.org/10.3390/diagnostics11020259.
88. S. G. Vesnin et al., “Diagnostic conformal system for neuroimaging of the brain using a multichannel radiothermometer based on monolithic integrated circuits,” Nanotekhnologii: razrabotka, primeneniye, vol. 12, no. 1, pp. 5-12, 2020. (In Russ.).
89. V. Yu. Leushin et al., “Possibilities of increasing the interference immunity of radiothermograph applicator antennas for brain diagnostics,” Sensors and Actuators A: Physical, vol. 337, p. 113439, Apr. 2022, doi:https://doi.org/10.1016/j.sna.2022.113439.