THE ELEMENT BASE OF THE MIC MICROWAVE FOR A MUL-TICHANNEL MULTI-FREQUENCY RADIOTHERMOMETER
Abstract and keywords
Abstract (English):
Modern medical microwave diagnostic equipment requires the use of solutions related to the compactness of the developed devices and high performance. It is possible to achieve the set conditions with the use of a modern semiconductor component base based on A3B5 compounds. The paper presents the designs of the main control elements of the microwave signal as part of the microwave radiothermometer monolithic Al-GaN/GaN/SiC HEMT SPDT transistor switch and MIC LNA developed on the basis of the pHEMT heterostructure of gallium arsenide.

Keywords:
radiothermometry, monolithic integrated circuits, heterostructures
Text
Text (PDF): Read Download
References

1. Yu.V. Gulyaev, V. Yu. Leushin, A. G. Gudkov, S. G. Vesnin et al., “Devices for diagnosing pathological changes in the human body using microwave radiometry,” // Nanotekhnologii: razrabotka, primeneniye - XXI vek, vol. 9, no. 2. pp. 27-45. 2017. (In Russ.).

2. I. Sidorov, A. Gudkov, E. Novichikhin, A. Taradin, R. Haarbrink, and S. Chizhikov, “The specific of 3D passive radars sensing alive and non-alive objects,” 2019 International Conference on Engineering and Telecommunication (EnT). Dolgoprudny, Russia, pp. 1-4, 2019.

3. M. K. Sedankin et al., “Modeling of the own thermal radiation of the kidney in the microwave range,” Meditsinskaya tekhnika, no. 1, pp. 44-47, 2019. (In Russ.).

4. A. G. Gudkov, S. V. Agasieva et al., “Investigation of the possibilities of radio frequency identification with passive tags in invasive biosensorics,” Meditsinskaya tekhnika, no. 2, pp. 26-29, 2015. (In Russ.).

5. A. G. Gudkov et al., “On the Possibility of Detecting Oil Films on a Water Surface by Methods of Microwave Radiometry,” Chemical and Petroleum Engineering, vol. 55, no. 1-2, pp. 57-62, May 2019, doi:https://doi.org/10.1007/s10556-019-00580-2.

6. S. G. Vesnin, M. Sedankin, V. Leushin, V. Skuratov, I. Nelin, and A. Konovalova, “Research of a microwave radiometer for monitoring of internal temperature of biological tissues,” Eastern-European Journal of Enterprise Technologies, vol. 4, no. 5 (100), pp. 6-15, Aug. 2019, doi:https://doi.org/10.15587/1729-4061.2019.176357.

7. M. K. Sedankin et al. “Antenna-applicators for medical microwave radio thermographs,” Meditsinskaya tekhnika, no. 4, pp.13-15, 2018. (In Russ.).

8. A. F. Bobrikhin et al., “Modeling antenna-applicators of unified antenna arrays of modular type for multichannel radiothermal mapping systems,” Antenny, no. 2, pp.17-26, 2014. (In Russ.).

9. Yu. V. Gulyaev et al., “Instruments for diagnosing pathological changes in the human body by microwave radiometry,” Nanotekhnologii: razrabotka, primeneniye, vol. 9, no. 2, pp. 27-45, 2017. (In Russ.).

10. L. G. Statsenko and O. A. Pugovkina, “Designing microwave devices for microwave radiothermometry,” // Izvestiya YuFU. Tekhnicheskiye nauki, no. 10, pp. 127-135, 2014. (In Russ.).

11. A. G. Gudkov, V. V. Popov, A. E. Chalykh et al. Microwave devices and antenna systems. Book. 2. Modeling, design and technology of microwave devices and phased array, ed. A. Yu. Grinev, Moscow: Radiotekhnika, 2014. (In Russ.).

12. A. G. Gudkov et al., “Prospects for Application of Radio-Frequency Identification Technology with Passive Tags in Invasive Biosensor Systems,” Biomedical Engineering, vol. 49, no. 2, pp. 98-101, Jul. 2015, doi:https://doi.org/10.1007/s10527-015-9506-x.

13. E. P. Novichikhin, I. A. Sidorov, V. Yu. Leushin, S. V. Agasieva, and S. V. Chizhikov, “The local heat source detection inside of the human body by means of microwave radiothermography,” Radioelectronics. Nanosystems. Information Technologies, vol. 12, no. 2, pp. 305-312, Aug. 2020, doi:https://doi.org/10.17725/rensit.2020.12.305. (In Russ.).

14. V. V. Emtsev et al., “The relationship between the reliability of transistors with 2D AlGaN/GaN channel and organization type of nanomaterial,” Technical Physics Letters, vol. 42, no. 7, pp. 701-703, Jul. 2016, doi:https://doi.org/10.1134/s1063785016070075.

15. A. G. Gudkov et al., “Use of Multichannel Microwave Radiometry for Functional Diagnostics of the Brain,” Biomedical Engineering, vol. 53, no. 2, pp. 108-111, Jul. 2019, doi:https://doi.org/10.1007/s10527-019-09887-z.

16. A. G. Gudkov et al., “Studies of a Microwave Radiometer Based on Integrated Circuits,” Biomedical Engineering, vol. 53, no. 6, pp. 413-416, Mar. 2020, doi:https://doi.org/10.1007/s10527-020-09954-w.

17. M. K. Sedankin et al., “Multichannel microwave radiothermometer,” Mezhdunar. Nauch.-Tekhn. Konf. «Informatika i tekhnologii. Innovatsionnyye tekhnologii v promyshlennosti i informatike, pp. 348-350, 2017. (In Russ.).

18. V. N. Vyuginov et al., “Electronic module of a multichannel microwave path for radio thermal mapping systems,” Elektromagnitnyye volny i elektronnyye sistemy, no. 1. pp. 27-34, 2014. (In Russ.).

19. S. V. Agasieva, A. G. Gudkov, A. V. Korolev, V. Yu. Leushin, V. A. Plushev, I. A. Sidorov, “Results of the development of a unified receiving module for multichannel medical radiothermographs,” 24th International Crimean Conference "Microwave and Telecommunication Technology” (CriMiCo’2014). Sevastopol, September 7-13, 2014. Sevastopol: Weber, vol. 2, pp. 1045-1046, 2014. (In Russ.).

20. V. Yu. Leushin, V. D. Shashurin, S. V. Chizhikov et al., “Results of the development of an experimental sample of a device for non-invasive diagnostics of the state of the brain using the method of multichannel microwave radiometry,” Nanotekhnologii: razrabotka, primeneniye - XXI vek, vol. 11, no. 1, pp. 44-50, 2019. (In Russ.).

21. V. N. Vyuginov et al., “Electronic module of multichannel microwave path for radio thermal mapping systems,” Elektromagnitnyye volny i elektronnyye sistemy, vol. 19, no. 1, pp. 27-34, 2014. (In Russ.).

22. A. G. Gudkov, Microwave electronic devices, book 2, ed. I. V. Lebedev, Moscow: Radi-otekhnika, 2008. (In Russ.).

23. Improving the reliability and quality of microwave GIS and MIS, book 1, ed. A. G. Gudkov and V. V. Popov, Moscow: Autotest LLC, 2012. (In Russ.).

24. Improving the reliability and quality of microwave GIS and MIS, book 2, ed. A. G. Gudkov and V. V. Popov, Moscow: Avtotest LLC, 2013. (In Russ.).

25. Improving the reliability and quality of microwave GIS and MIS, book 3, ed. V. N. Vyuginov, A. G. Gudkov and V. V. Popov, Moscow: Virazh-Center LLC, 2016. (In Russ.).

26. A. G. Gudkov, S. V. Chizhikov et al., patent No. 2646536 (RF). Heterostructural field-effect transistor based on gallium nitride with improved temperature stability of the current-voltage characteristic. Published in Bulletin of Inventions, no. 7, 2018. (In Russ.).

27. V. G. Tikhomirov et al., “Simulation of electric field distribution in GaN HEMTs for the onset of structure degradation,” 2017 11th International Workshop on the Electromagnetic Compatibility of Integrated Circuits (EMCCompo), Jul. 2017, doi:https://doi.org/10.1109/emccompo.2017.7998094.

28. Y. M. Parnes et al., “Evaluation of the influence mode on the CVC GaN HEMT using numerical modeling,” Journal of Physics: Conference Series, vol. 741, p. 012024, Aug. 2016, doi:https://doi.org/10.1088/1742-6596/741/1/012024.

29. V. G. Tikhomirov, A. G. Gudkov, S. V. Agasieva, D. D. Dynaiev, M. K. Popov, and S. V. Chizhikov, “Increasing efficiency of GaN HEMT transistors in equipment for radiometry using numerical simulation,” Journal of Physics: Conference Series, vol. 1410, no. 1, p. 012191, Dec. 2019, doi:https://doi.org/10.1088/1742-6596/1410/1/012191.


Login or Create
* Forgot password?