Author has analyzed models, that describe the development of a fine pattern on diatoms valves, and have found that those models approximately simulate areolae topology. Since the branching structures of siliceous ribs form the basis of morphogenesis of diatoms areolae patterns, to model them, author suggests to use L-system. It perfect describes the development of dichotomous processes. Author describes L-systems that simulate one- and double-sided radial-parallel patterns and double-sided spiral pattern (spiral phyllotaxis) of areolae rows on centric diatoms.
areolae pattern, centric diatoms, morphogenesis, L-system, radial-parallel pattern, spiral phyllotaxis
1. Nikolaev V.A., Harvud D.M. Morfologiya, taksonomiya i sistema klassifikacii centricheskih diatomovyh vodorosley. SPb.: Nauka, 2002, 118 s. [Nikolaev V.A., Harwood D.M. Morphology, taxonomy and system classification of centric diatoms. St. Petersburg: Nauka, 2002, 118 p. (In Russ.)]
2. Bukhtiyarova L.N. Frustule functions and functional morphology of Bacillariophyta. Algology, 2009, vol. 19, no. 3, pp. 321-331.
3. Lyah A.M. Model' raspredeleniya areol i ploschad' poverhnosti por, raspolozhennyh na stvorkah centrichnyh diatomovyh vodorosley iz roda Coscinodiscus Ehr. i Thalassiosira Cl. Sovremennaya fitomorfologiya, 2013, t. 3, c. 213-218. [Lyakh A.M. The model of areolae distribution and surface area of pores located on the valves of centric diatoms Coscinodiscus Ehr. and Thalassiosira Cl. Modern Phytomorphology, 2013, vol. 3, pp. 213-218. (In Russ.)]
4. Gordon R., Drum R.W. The chemical basis of diatom morphogenesis. Int. Rev. Cytology, 1994, vol. 150, pp. 243-422.
5. Parkinson J., Brechet Y., Gordon R. Centric diatom morphogenesis: a model based on a DLA algorithm investigating the potential role of microtubules. Biochim. Biophys. Acta, 1999, vol. 1452, pp. 89-102.
6. Sumper M. A phase separation model for the nanopatterning of diatom biosilica. Science, 2002, vol. 295, pp. 2430-2433.
7. Lenoci L., Camp P.J. Diatom structures templated by phase-separated fluids, Langmuir, 2008, vol. 24, pp. 217-223.
8. Bentley K., Cox E.J., Bentley P.J. Nature’s batik: a computer evolution model of diatom valve morphogenesis. J. Nanosci. Nanotech., 2005, vol. 5, pp. 1-10.
9. Longuet-Higgins M.S. Geometrical constraints on the development of a diatom. J. Theoretical Biology, 2001, vol. 210, pp. 101-105.
10. Willis L., Cox E.J., Duke T. A simple probabilistic model of submicroscopic diatom morphogenesis. J. Royal Soc. Interface, 2013, vol. 10, pp. 1-9.
11. Ross R., Cox E.J., Karayeva N.I., Mann D.G., Paddock T.B.B., Simonsen R., Sims P.A. An amended terminology for the siliceous components of the diatom cell. Nova Hedwigia, Beihefte, 1979, vol. 64, pp. 513-533.
12. Schmid A.-M.M., Volcani B.E. Wall morphogenesis in Coscinodiscus wailesii Gran and Angst. I. Valve morphology and development of its architecture. J. Phycol, 1983, vol. 19, pp. 387-402.
13. Schmid A.-M.M. Aspects of morphogenesis and function of diatom cell walls with implications for taxonomy. Protoplasma, 1994, vol. 181, pp. 43-60.
14. Prusinkiewicz P., Lindenmayer A. The algorithmic beauty of plants. New York: Springer-Verlag, 1990, 228 p.
15. Nikolov R., Sendova E. Nachala informatiki. Yazyk Logo. M.: Gl. red. fiz.-mat. lit., 1989. [Nikolov P., Sendova E. Nachala informatiki. Yazyk Logo. Mscow, 1989. (In Russ.)]
16. Diatomovye vodorosli Rossii i sopredel'nyh stran. Iskopaemye i sovremennye. Tom II, vyp. 5. SPb.: Izd-vo S.-Peterb. un-ta, 2008, 171 s. [The diatoms of Russia and adjacent countries. Fossil and recent. Vol. II, issue 5. St.Petersburg: St. Petersburg University Press, 2008, 171 p. (In Russ.)]
17. Jean R.V. Phyllotaxis: a systematic study in plant morphogenesis. Cambridge, New York, 1994, 386 p.