OPTIMIZING MASSART METHOD FOR OBTAINING BIOOCOMPATIBLE MAGNETITE NANOPARTICLES OF GIVEN SIZES
Abstract and keywords
Abstract (English):
It has been shown that in order to obtain biocompatible magnetite nanoparticles of 14±6 nm in size by the Massart method it is worthwhile to conduct the reaction in an inert atmosphere (argon). The process conditions have been optimized: concentrations of the salts, temperature, reaction time and stirring speed. Sizes, structure and chemical composition of the particles were studied by transmission electron microscopy, electron diffraction and other methods. By intraperitoneal injecting the preparation to intact mice we have shown that the obtained nanoparticles are non-toxic and may be used for biomedical purposes, including as drugs carriers for target delivery to a tumor.

Keywords:
the Massart method, biocompatible magnetite nanoparticles, an inert atmosphere, transmission electron microscopy, toxciity of the preparation
Text
Publication text (PDF): Read Download
References

1. Hu A., Yee G.T., Lin W. Magnetically recoverable chiral catalysts immobilized on magnetite nanoparticles for asymmetric hydrogenation of aromatic ketones. J. Am. Chem. Soc., 2005, vol. 127, pp. 12486-12487.

2. Akin I., Arslan G., Tor A., Ersoz M., Cengeloglu Y. Arsenic(V) removal from underground water by magnetic nanoparticles synthesized from waste red mud. J. Hazard. Mater., 2012, vol. 235-236, pp. 62-68.

3. Sun S., Murray C.B., Weller D., Folks L., Moser A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science, 2000, vol. 287, pp. 1989-1992.

4. Chomoucka J., Drbohlavova J., Huska D., Adam V., Kizek R., Hubalek J. Magnetic nanoparticles and targeted drug delivering. Pharm. Res., 2010, vol. 62, pp. 144-149.

5. Mulens V., Morales M.P., Barber D.F. Development of magnetic nanoparticles for cancer gene therapy: a comprehensive review. Hindawi Publishing Corporation, ISRN Nanomaterials, vol. 2013, Article ID 646284, 14 pages.

6. Miller M.M., Prinz G.A., Cheng S.F., Bounnak S. Detection of a micron-sized magnetic sphere using a ring- shaped anisotropic magnetoresistance-based sensor: A model for a magnetoresistance-based biosensor. Appl. Phys. Lett., 2002, vol. 81, no. 12, pp. 2211-2213.

7. Felton C., Karmakar A., Gartia Y., Ramidi P., Biris A.S., Ghosh A. Magnetic nanoparticles as contrast agents in biomedical imaging: recent advances in iron- and manganese-based magnetic nanoparticles. Drug Metab. Rev., 2014, vol. 46, no. 2, pp. 142-154.

8. Rockenberger J., Scher E.C., Alivisatos A.P. A new nonhydrolytic single-precursor approach to surfactant- capped nanocrystals of transition metal oxides. J. Am. Chem. Soc., 1999, vol. 121, pp. 11595-11596.

9. Biddlecombe G.B., Gun’ko Y.K., Kelly J.M., Pillai S.C., Coey J.M.D., Venkatesan M., Douvalis A.P. Preparation of magnetic nanoparticles and their assemblies using a new Fe(II) alkoxide precursor. J. Mater. Chem., 2001, vol. 11, pp. 2937-2939.

10. Inouye K., Endo R., Otsuka Y., Miyashiro K., Kaneko K., Ishikawa T. Oxygenation of ferrous ions in reversed micelle and reversed microemulsion. J. Phys. Chem., 1982, vol. 86, pp. 1465-1469.

11. Duxin N., Stephan O., Petit C., Bonville P., Colliex C., Pileni M.P. Pure α-Fe coated by an Fe1-xBx alloy. Chem. Mater., 1997, vol. 9, pp. 2096-2100.

12. Massart R. Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans. Magn., 1981, vol. 17, pp. 1247-1248.


Login or Create
* Forgot password?