ELECTRON MICROSCOPY OF A BIOFILM FORMED IN A LABORATORY STAND
Abstract and keywords
Abstract (English):
Biofilm is a community of different types of non-competing microorganisms that form a multi-functional symbiosis of complex architecture. By all indications, such a colony should be regarded as a biological tissue possessing special properties. In their series, the ability to self-organization through the formation of glycoprotein matrix, which due to adhesion to the substrate forms a comfortable habitat. We note the chemical aggressiveness as a way of fixing on the surface and source of substrates, but at the same time the cause of corrosion of the most resistant materials. Next, we note the biological activity, which is expressed in uncontrolled reproduction, even under hypoxia, limited only by the availability of resources. Multilayer spatial organization, the presence of mechanisms for maintaining homeostasis, makes biofilms resistant to many chemical, physical or bacteriological factors, including disinfection. This explains the phenomenal resistance of biofilms to broad-spectrum antibiotics.

Keywords:
flow cell biofilm reactor, polymeric matrix, 3D bacterial communities, scanning electron microscopy, electrochemically activated water
Text
Text (PDF): Read Download
References

1. Bridier A., Briandet R., Thomas V., Dubois-Brissonnet F. Resistance of bacterial biofilms to disinfectants: a review. Biofouling, 2014, vol. 27, pp. 1017-1032.

2. Cloete T.E., Thantsha M.S., Maluleke M.R., Kirkpatrick R. The antimicrobial mechanism of electrochemically activated water against Pseudomonas aeruginosa and Escherichia coli as determined by SDS-PAGE analysis. J Appl. Microbiol., 2009, vol. 107, pp. 379-384.

3. Ozaki M., Oyshima T., Mukumoto M., Konishi H., Hirashita A., Maeda N., Nakamura Y. A study for biofilm removing and antimicrobial effects by microbubbled tap water and other functional water, electrolyzed hypochlorite water and ozonated water. Dental Materials J., 2012, vol. 31, pp. 662-668.

4. Whangchai K., Uthaibutra J., Phiyanalinmat S. Effect of NaCl concentration, electrolysis time, and electrical potential on efficiency of electrolyzed oxidizing water on the mortality of PENICILLIUM DIGITATUM in suspension. Acta Hortic., 2013, vol. 973, pp. 26-32.

5. D’Atanasio N., Capezzone de Joannon A., Mangano G., Meloni M., Giarratana N., Milanese C., Tongiani S. A New Acid-oxidizing Solution: Assessment of Its Role on Methicillinresistant Staphylococcus aureus (MRSA) Biofilm Morphological Changes. WOUNDS, 2015, vol. 27, pp. 265-273.

6. Rollet C., Gal L., Guzzo J. Biofilm-detached cells, a transitionfroma sessile to a planktonic phenotype: a comparative studyofadhesionand physiological characteristics in Pseudomonas aeruginosa. FEMS Microbiol. Lett., 2009, vol. 290. pp. 135-142.

7. Kumar M.A., Anandapandian K.T.K., Parthiban K. Production and Characterization of Exopolysaccharides (EPS) from Biofilm Forming Marine Bacterium. Braz. Arch. Biol. Technol., 2011, vol. 54, pp. 259-265.

8. Wilking J.N., Angelini T.E., Seminara A., Brenner M.P., Weitz D.A. Biofilms as complex fluids. MRS Bulletin, 2011, vol. 36, pp. 385- 391.

9. Hansen M.C., Palmer R.J. Jr., White D.C. Flowcell culture of Porphyromonas gingivalis biofilms under anaerobic conditions. J. Microbiol. Methods, 2000, vol. 40, pp. 233-239.

10. Goeres D.M., Loetterle L.R., Hamilton M.A., Murga R., Kirby D.W., Donlan R.M. Statistical assessment of a laboratory method for growing biofilms. Microbiology, 2005, vol. 151, pp. 757-762.

11. Crusz S.A., Popat R., Rybtke M.T., Cámara M., Givskov M., Tolker-Nielsen T., Diggle S.P., Williams P. Bursting the bubble on bacterial biofilms: a flow cell methodology. Biofouling, 2012, vol. 28, pp. 835-842.

12. Drescher K., Shenb Yi., Basslera B.L., Stone H.A. Biofilm streamers cause catastrophic disruption of flow with consequences for environmental and medical systems. PNAS, 2013, vol. 110, pp. 4345-4350.

13. Escalona E.S. Design of an Experimental Approach to Study the Growth of Biofilm on Polymethylmethacrylate. A Senior Project, 2013, pp.1-23.

14. Finlay J.A., Schultz M.P., Cone G., Callow M.E., Callow J.A. A novel biofilm channel for evaluating the adhesion of diatoms to non-biocidal coatings. Biofouling, 2013, vol. 29, pp. 401-411.

15. Billings N., Rusconi R., Stocker R., Ribbeck K. Microfluidic-based Time-kill Kinetic Assay. Bio-protocol, 2014, vol. 4, pp. 1-6.

16. Ludecke C., Jandt K.D., Siegismund D., Kujau M.J., Zang E., Rettenmayr M., Bossert J., Roth M. Reproducible biofilm cultivation of chemostat-grown escherichia coli and investigation of bacterial adhesion on biomaterials using a non-constant-depth film fermenter. PLOS ONE, 2014, vol. 9, pp. e84837- e84837.

17. Maierl M., Jörger M., Rosker P., Reisner A. In vitro dynamic model of a catheterized bladder and biofilm assay. Bio-protocol, 2015, vol. 5, pp. 1-9.

18. Espeso D.R., Carpio A., Martínez-García E., de Lorenzo V. Stenosis triggers spread of helical Pseudomonas biofilms in cylindrical flow systems. Nature scientific reports, 2016, vol. 6, pp. 1-10.

19. Peterson S.B., Irie Y., Borlee B.R., Murakami K., Harrison J.J., Colvin K.M., Parsek M.R. Different methods for culturing biofilms in vitro. In: Biofilm Infections, Bjarnsholt et al. (eds.), 2016, Springer Science+Business Media.

20. Boyle M.A., O’Donnell M.J., Russell R.J., Coleman D.C. Lack of cytotoxicity by Trustwater Ecasol used to maintain good quality dental unit waterline output water in keratinocyte monolayer and reconstituted human oral epithelial tissue models. J Dent., 2010, vol. 38, pp. 930-940.

21. Pogorelov A.G., Gavrilyuk V.B., Pogorelova V.N., Gavrilyuk B.K. Skaniruyuschaya elektronnaya mikroskopiya ranevyh pokrytiy iz biosinteticheskih materialov tipa «Biokol». Kletochnye tehnologii v biologii i medicine, 2012, №3, c. 176-180. [Pogrelov A.G., Gavriluk B.K., Pogorelodva V.N., Gavriluk V.B. Scanning Electron Microscopy of Biosynthetic Wound Dressings Biocol. Bul. Exp. Biol. Med., 2012, vol. 154, pp. 167-170. (In Russ.)]

22. Chebotar' I.V., Pogorelov A.G., Yashin V.A., Gur'ev E.L., Lominadze G.G. Sovremennye tehnologii issledovaniya bakterial'nyh bioplenok. Sovremennye tehnologii v medicine, 2013, t. 5, c. 14-20. [Chebotar I.V., Pogorelov A.G., Yashin V.A., Guryev E.L., Lominadze G.G. Modern Technologies of Bacterial Biofilm Study. Modern Technologies in Medicine, 2013, vol. 5, pp. 14-18. (In Russ.)]

23. Pogorelov A.G., Chebotar' I.V., Pogorelova V.N. Izuchenie mikrobnoy bioplenki na vnutrenney poverhnosti katetera metodom skaniruyuschey elektronnoy mikroskopii. Kletochnye tehnologii v biologii i medicine, 2014, № 2, c. 133-136. [Pogorelov A.G., Chebotar I.V., Pogorelova V.N. Scanning electron microscopy of biofilms adherent to the inner catheter surface. Bul. Exp. Biol. Med., 2014, vol. 157, pp. 711-713. (In Russ.)]

24. Firsova V.G., Parshikov V.V., Chebotar' I.V., Lazareva A.V., Pogorelov A.G. Mikrobiologicheskaya diagnostika i vybor antimikrobnoy terapii infekcii zhelchevyvodyaschih putey. Annaly hirurgicheskoy gepatologii, 2015, t. 20, c. 124-131. [Firsova V.G., Parshikov V.V., Chebotar I.V., Lazareva A.V., Pogorelov A.G. Microbiological diagnosis and choice of antibacterialis therapy of biliary infection. Ann. Surgery Hepatology, 2015, vol. 20, pp. 124-131. (In Russ.)]


Login or Create
* Forgot password?