CHIRAL HIERARCHIES OF PROTEIN STRUCTURES AS AN INSTRUMENT OF FOLDING
Abstract and keywords
Abstract (English):
One of the basic physical concepts of molecular biophysics "protein-machine" is based on the ideas of a hierarchical arrangement of protein macromolecules and the presence of "selected mechanical degrees of freedom" in them structurally associated with the formation of secondary and tertiary structures in folding processes. We develop a concept according to which the structural hierarchy and the selected mechanical degrees of freedom are formed by intramolecular and intermolecular alternating chiral structures, helices and supercoils. Regular alternation of the chirality sence is revealed in transitions from the lowest to higher level of structural and functional organization in protein macromolecules where it is L-D- L-D. A periodic table of supercoiled structures in proteins is made and a thermodynamic folding model that takes into account alternating chiral structuring is proposed. The possibility of representing a system of biological macromolecules as a periodic system is discussed according to chiral antiphase of structural levels in proteins and DNA macromolecules.

Keywords:
chirality, nucleic acids, proteins, structural hierarchies, folding, periodic system of biomacromolecules
Text
Publication text (PDF): Read Download
References

1. Tvepdiclov V. A., Cidopova A. E., Yakovenko L. V. Biofizika. 2012, t. 57, № 1, 146 s. [Tverdislov V. A., Sidorova A. E., Yakovenko L. V. Biofizika. 2012, vol. 57, no. 1, 146 p. (In Russ.)]

2. Tverdislov V.A. Biofizika. 2013. t. 58, № 1, 159 s. [Tverdislov V.A. Biofizika. 2013, vol. 58, № 1, 159 p. (In Russ.)]

3. Tverdislov V.A., Malyshko E.V., Il'chenko S.A. Ot avtovolnovyh mehanizmov samoorganizacii k molekulyarnym mashinam. Izvestiya RAN. Seriya fizicheskaya, t. 79, № 3, s. 1728-1732. [verdislov V.A., Malyshko E.V., Ilchenko S.A. From Autowave Mechanisms of Self-Assembly to Molecular Machines. Izvestiya RAN. Seriya fizicheskaya, vol. 79, no. 3, pp. 1728-1732. (In Russ.)]

4. Blyumenfel'd L.A. Reshaemye i nereshaemye problemy biologicheskoy fiziki. M.: Editorial URSS, 2002, 160 s. [Blyumenfeld L.A. Solvable and unsolvable problems of biological physics. Editorial URSS, 2002. (In Russ.)]

5. Chepnavckiy D.C. Problema proishozhdeniya zhizni i myshleniya s tochki zreniya sovremennoy fiziki. Ucpexi fiz. nauk, 2000, t. 170, № 2, s. 157. [Chernavskii D.S. The origin of life and thinking from the viewpoint of modern physics. Phys. Usp., 2000, vol. 170, no. 2, p. 157 (In Russ.)]

6. Uey T. Fizicheskie osnovy molekulyarnoy biologii. Per. s angl. Dolgoprudnyy: Izdat. dom “Intellekt”, 2010, 368 s. [Waigh T. Physical foundations of molecular biology. Tr. from Eng. Dolgoprudnyj, “Intellekt”, 2010, 368 p. (In Russ.)]

7. Finkel'shteyn A.V., Pticyn O.B. Fizika belka: Kurs lekciy s cvetnymi i stereoskopicheskimi illyustraciyami i zadachami. 3e izd., ispr. i dop. M.: KDU, 2005, 456 s. [Finkelshtein A.V., Ptitsyn O. B. Protein Physics: A Course of Lectures. M.:KDU, 2005, 456 p. (In Russ.)]

8. Blumenfeld L.A. and Tikhonov A.N. Biophysical Thermodynamics of Intracellular Processes. Molecular Machines of the Living Cell. Springer-Verlag, New-York,1994.

9. Batyanovskiy A.V., Volotovskiy I.D., Namiot V.A., Filatov I.V., Galkin I.A., Gnuchev N.V., Tumanyan V.G., Esipova N.G. Biofizika. 2015, t. 60, № 3, 437 s. [9. Batyanovskii A.V., Volotovskii I.D., Namiot V.A., Filatov I.V., Galkin I.A., Gnuchev N.V., Tumanyan V.G., Esipova N.G. Biofizika. 2015, vol. 60, no. 3, 437 p. (In Russ.)]

10. Batyanovskiy A.V., Namiot V.A., Filatov I.V., Moldaver M.V., Anashkina A.A., Tumanyan V.G., Esipova N.G., Volotovskiy I.D. Biofizika. 2013, t. 58, № 6, 1069 s. [Batyanovskii A.V., Namiot V.A., Filatov I.V., Moldaver M.V., Anashkina A.A., Tumanyan V.G., Esipova N.G., Volotovskii I.D. Biofizika. 2013, vol. 58, no. 6, 1069 p. (In Russ.)]

11. Namiot V.A., Batyanovskiy A.V., Filatov I.V., Tumanyan V.G., Esipova N.G. Biofizika. 2016, t. 61, № 1, 54 s. [Namiot V.A., Batyanovskii A.V., Filatov I.V., Tumanyan V.G., Esipova N.G. Biofizika. 2016, vol. 61, no. 1, 54 p. (In Russ.)]

12. Moutevelis E. and Woolfson D.A Periodic Table of Coiled-Coil Protein Structures. J. Mol. Biol., 2009, vol. 385, 726-732.

13. Testa O.D., Moutevelis E., and Woolfson D.N. CC+: a relational database of coiled-coil structures. Nucleic Acids Res. 2009, vol. 37, D315-D322.

14. Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H., Shindyalov I.N., Bourne P.E. The Protein Data Bank. Nucleic Acids Research, vol. 28, pp. 235-242.

15. Levinthal C. Proc. meeting held at Allerton House, Monticello, Illinois. Eds DeBrunner J.T.P., Munck E., University of Illinois, 1969.

16. Finkel'shteyn A.V., Garbuzinskiy S.A. Biofizika. 2016, t. 61, № 1, 5 s. [Finkelstein A.V., Garbuzynsky S.O. Biofizika. 2016, vol. 61, no. 1, 5 p. (In Russ.)]

17. Shaytan K.V., Fedik I.V. Biofizika. 2015, t. 60, № 3, 421 s. [Shaitan K.V., Fedik I.V. Biofizika. 2015, vol. 60, no. 3, 421 p. (In Russ.)]

18. Shaytan K.V., Lozhnikov M.A., Kobel'kov G.M. Biofizika. 2016, t. 61, № 4, 629 s. [Shaitan K.V., Lozhnikov M.A., Kobelkov G.M. Biofizika. 2016, vol. 61, no. 4, 629 p. (In Russ.)]

19. Ellis RJ, van der Vies SM Molecular chaperones. Annu. Rev. Biochem., 1991, vol. 60, pp. 321-47.


Login or Create
* Forgot password?