THE ROLE OF CONTACTS OF N-TERMINAL REGION OF PROTEIN L27 WITH RIBOSOMAL 23S RNA IN THE FORMATION OF THE FUNCTIONALLY ACTIVE BACTERIAL RIBOSOMES
Abstract and keywords
Abstract (English):
Ribosomal protein L27 is a feature of the bacterial ribosome. Based on structural studies, the extended N- terminal tail of protein L27 is known to reach the peptidyl transferase center of the ribosome, where it forms the extensive contacts with helixes H80-H81 of the 23S rRNA as well as several contacts with tRNAs at the A- and P-sites. Shortening of the Escherichia coli protein L27 from N-terminus led to the decrease of the functional activity of the ribosomes. It is supposed that protein L27 plays an important role in the positioning of tRNA in two tRNA-binding sites of the ribosome. In the present work, the role of the contacts of the N-terminal region of protein L27 with the 23S rRNA in the function of the ribosome has been investigated. For this purpose, a number of E. coli strains have been constructed containing protein L27 with the point replacements. It has turned out that some replacements (K4L or K4A/K5G) introduced into the protein lead to the significant slowdown of the cell growth and the decrease in the activity of their translation apparatus. Based on the available structural data, within the ribosome these conservative amino acid residues of protein L27 form the contacts only with 23S rRNA but not with tRNA. The data obtained in the work indicate the importance of the contacts of N-terminal region of protein L27 with the 23S rRNA for the formation of the functionally active bacterial ribosome in vivo .

Keywords:
Escherichia coli, ribosomal protein L27, ribosomal RNA, ribosome, translation, Escherichia coli
Text
Publication text (PDF): Read Download
References

1. Lecompte O., Ripp R., Thierry J.C., Moras D., Poch O. Comparative analysis of ribosomal proteins in complete genomes: an example of reductive evolution at the domain scale. Nucleic Acids Res., 2002, vol. 30, rr. 5382-5390.

2. Ban N., Beckmann R., Cate J.H., Dinman J.D., Dragon F., Ellis S.R., Lafontaine D.L., Lindahl L., Liljas A., Lipton J.M., McAlear M.A., Moore P.B., Noller H.F., Ortega J., Panse V.G., Ramakrishnan V., Spahn C.M., Steitz T.A., Tchorzewski M., Tollervey D., Warren A.J., Williamson J.R., Wilson D., Yonath A., Yusupov M. A new system for naming ribosomal proteins. Curr. Opin. Struct. Biol., 2014, vol. 24, pp. 165-169.

3. Harms J., Schluenzen F., Zarivach R., Bashan A., Gat S., Agmon I., Bartels H., Franceschi F., Yonath A. High Resolution Structure of the Large Ribosomal Subunit from a Mesophilic Eubacterium. Cell, 2001, vol. 107, pp. 679-688.

4. Selmer M., Dunham C.M., Murphy F.V. 4th, Weixlbaumer A., Petry S., Kelley A.C., Weir J.R., Ramakrishnan V. Structure of the 70S ribosome complexed with mRNA and tRNA. Science, 2006, vol. 313, pp. 1935-1942.

5. Schuwirth B.S., Borovinskaya M.A., Hau C.W., Zhang W., Vila-Sanjurjo A., Holton J.M., Cate J.H.D. Structures of the bacterial ribosome at 3.5 A resolution. Science, 2005, vol. 310, pp. 827-834.

6. Voorhees R.M., Weixlbaumer A., Loakes D., Kelley A.C., Ramakrishnan V. Insights into substrate stabilization from snapshots of the peptidyl transferase center of the intact 70S ribosome. Nat. Struct. Mol. Biol., 2009, vol. 16, pp. 528-533.

7. Jenner L., Demeshkina N., Yusupova G., Yusupov M. Structural rearrangements of the ribosome at the tRNA proofreading step. Nat. Struct. Mol. Biol., 2010, vol. 17, pp. 1072-1078.

8. Maguire B.A., Beniaminov A.D., Ramu H., Mankin A.S., Zimmermann R.A. A Protein Component at the Heart of an RNA Machine: The Importance of Protein L27 for the Function of the Bacterial Ribosome. Mo.l Cell., 2005, vol. 20, pp. 427-435.

9. Miller J.H. Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, N. Y., 1972.

10. Yu D., Ellis H.M., Lee E.C., Jenkins N.A., Copeland N.G., Court D.L. An efficient recombination system for chromosome engineering in Escherichia coli. Proc. Natl. Acad. Sci., 2000, vol. 97, pp. 5978-5983.

11. Blattner F.R., Plunkett G. 3rd, Bloch C.A., Perna N.T., Burland V., Riley M., Collado-Vides J., Glasner J.D., Rode C.K., Mayhew G.F., Gregor J., Davis N.W., Kirkpatrick H.A., Goeden M.A., Rose D.J., Mau B., Shao Y. The complete genome sequence of Escherichia coli K-12. Science, 1997, vol. 277, pp. 1453-1462.

12. Guzman L.M., Belin D., Carson M.J., Beckwith J. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J. Bacteriol., 1995, vol. 177, pp. 4121-4130.

13. Thomason L., Court D.L., Bubunenko M., Costantino N., Wilson H., Datta S., Oppenheim A. Recombineering: Genetic Engineering in Bacteria Using Homologous Recombination. Curr. Protoc. Mol. Biol., 2007, ch. 1, unit 1.16, doi:https://doi.org/10.1002/0471142727.mb0116s78.

14. Erbe R.W., Nau M.M., Leder P. Translation and translocation of defined RNA messengers. J Mol Biol., 1969, vol. 39, pp. 441-460.

15. Staehelin T., Maglott D.M., Monro R.E. On the catalytic center of peptidyl transfer: a part of the 50S ribosome structure. Cold Spring Harb. Symp. Quant. Biol., 1969, vol. 34, pp. 39-48.

16. Korepanov A.P., Gongadze G.M., Garber M.B., Court D.L., Bubunenko M.G. Importance of the 5S rRNA-binding ribosomal proteins for cell viability and translation in Escherichia coli. J. Mol. Biol., 2007, vol. 366, pp. 1199-1208.

17. Korepanov A.P., Korobeinikova A.V., Shestakov S.A., Garber M.B., Gongadze G.M. Protein L5 is crucial for in vivo assembly of the bacterial 50S ribosomal subunit central protuberance. Nucleic Acids Res., 2012, vol. 40, pp. 9153-9159.

18. Moazed D., Stern S., Noller H.F. Rapid chemical probing of conformation in 16S ribosomal RNA and 30S ribosomal subunits using primer extension. J. Mol. Biol., 1986, vol. 187, pp. 399-416.

19. Sergiev P.V. Molecular aspects of the functioning of ribosomal RNA. Thesis for the degree of Doctor of Chemical Sciences, 2008.


Login or Create
* Forgot password?