PHOTOMODULATION EFFECT OF LOW-DOSE BLUE LIGHT ON MITOCHONDRIAL ACTIVITY OF RETINAL PIGMENT EPITHELIUM
Abstract and keywords
Abstract (English):
We investigated the effect of low-dose blue LED irradiation (450-460 nm, 0.01-1 J / cm2) on the retinal pigment epithelium (RPE) cells of Japanese quail Coturnix japonica . In biochemical experiments it was shown that such light exposure promoted mitochondrial activity of RPE cells as well as increased their overall metabolic and antioxidant activity. In addition, electron microscopy and morphometric analysis revealed the increase in the number and the specific volume of RPE mitochondria in response to the blue light. So, our data indicate that low-dose blue light has activation effect on the RPE metabolism (especially on their mitochondrial activity) and open prospects for the future use of weak blue light for photomodulation of cellular processes in therapeutic ophthalmology.

Keywords:
blue light, retinal pigment epithelium, mitochondria, metabolic activity, antioxidant activity, electron microscopy
Text
Publication text (PDF): Read Download
References

1. Vekshin N.L. Svetozavisimoe fosforilirovanie v mitohondriyah. Molekulyarnaya biologiya, 1991, t. 25, № 1, c. 54-59. [Vekshin N.L. Light-dependent phosphorylation in the mitochondria. Molecular biology, 1991, vol. 25, no. 1, pp. 54-59. (In Russ.)]

2. Kopaev S.Yu. Kliniko-eksperimental'noe obosnovanie kombinirovannogo ispol'zovaniya neodimovogo IAG 1,44 mkm i geliy-neonovogo 0,63 mkm lazerov v hirurgii katarakty. Diss. … d-ra nauk. Moskva, 2014. [Kopaev S.Y. Clinical and experimental study of the combined use of a neodymium YAG of 1.44 microns and a helium-neon 0,63 µm lasers in cataract surgery. Doctoral thesis. Moscow. 2014. (In Russ.)]

3. Karu T.Y. Universal'nyy kletochnyy mehanizm lazernoy biostimulyacii: fotoaktivaciya fermenta dyhatel'noy cepi citohrom-s-oksidazy. Sovremennye lazerno-informacionnye i lazernye tehnologii: sb. trudov IPLIT RAN. M: Interkontakt Nauka, 2005, c. 131-143. [Karu T.Y. Modern laser-information and laser technologies: collected works of IPLIT RAN. M: Interkontakt Nauka, 2005, pp. 131-143. (In Russ.)]

4. Passarella S., Karu T. Absorption of monochromatic and narrow band radiation in the visible and near IR by both mitochondrial and non-mitochondrial photoacceptors results in photobiomodulation. Photochem. Photobiol., 2014, vol. 140, pp. 344-358.

5. Van Norren D., Gorgels T.G. The action spectrum of photochemical to the retina: a review of monochromatical threshold data. Photochem. Photobiol., 2011, vol. 87, pp. 747-753.

6. Boulton M., Dontsov A., Ostrovsky M., Jarvis-Evans J., Svistunenko D. Lipofuscin is a photoinducible free radical generator. Photochem. Photobiol., 1993, vol. 19, pp. 201-204.

7. Cai S.J., Yan M., Mao Y.Q., Zhou Y. [et al.] Relationship between blue light-induced apoptosis and mitochondrial membrane potential and cytochrome C in cultured human retinal pigment epithelium cells. Zhonghua Yan Ke Za Zhi., 2006, vol. 42, no. 12, pp. 1095-1102.

8. Buravlev E.A., Zhidkova T.V., Osipov A.N., Vladimirov Y.A. Are the mitochondrial respiratory complexes blocked by NO the targets for the laser and LED therapy? Lasers Med. Sci. 2015, vol. 30, no. 1, pp. 173-180.

9. Strauss O. The retinal pigment epithelium in visual function. Physiol. Rev., 2005, vol. 85, pp. 845-881.

10. Zak P.P., Serezhnikova N.B., Pogodina L.S., Trofimova N.N., Gur'eva T.S., Dadasheva O.A. Fotoinducirovannye izmeneniya subkletochnyh struktur retinal'nogo pigmentnogo epiteliya perepela Soturnix japonica. Biohimiya, 2015, t. 80, № 6, s. 931-936. [Zak P.P., Serezhnikova N.B., Pogodina L.S., Trofimova N.N., Gur'eva T.S., Dadasheva O.A. Biochemistry (Mosc), 2015, vol. 80, no. 6, pp. 931-936. (In Russ.)]

11. Gan Z., Audi S.H., Bongar R.D., Gauthier K.M., Merker M.P. Quantifying mitochondrial and plasma membrane potentials in intact pulmonary arterial endothelial cells based on extracellular deposition of rhodamine dyes. Am. J. Lung Cell Mol. Physiol., 2011, vol. 300, pp. 762-772.

12. Gonzalez R.J., Tarloff J.B. Evaluation of hepatic subcellular fractions for Alamar blue and MTT reductase activity. Toxicol. In Vitro, 2001, vol. 15, pp. 257-259.

13. Teselkin Yu.O., Babenkova I.V., Lyubickiy O.B., Klebanov G.I., Vladimirov Yu.A. Izmerenie antioksidantnoy aktivnosti syvorotki krovi s pomosch'yu sistemy gemoglobin-peroksid vodoroda-lyuminol. Voprosy Med. Himii, 1998, t. 44, s. 70-76. [Teselkin Y.O., Babenkova I.V., Lyubitsky O.B., Klebanov G.I., Vladimirov Y.A. Measurement of antioxidant activity of blood serum using the hemoglobin-hydrogen peroxide-luminol system. Voprosy Med. Chemistry, 1998, vol. 44, pp. 70-76. (In Russ.)]

14. Roehlecke C., Schaller A., Knels L., Funk R.H.W. The influence of sublethal blue light exposure on human RPE cells. Molecular Vision, 2009, vol. 15, pp. 1929-1938.

15. Roehlecke C., Schumann U., Ader M., Brunssen C., Bramke S., Morawietz H., Funk R.H.W. Stress reaction in outer segments of photoreceptors after blue light irradiation. PLOS ONE, 2013, vol. 8, pp. 1-12.


Login or Create
* Forgot password?