ON THE INTERACTION OF WATER WITH HYDROPHILIC SURFACES
Abstract and keywords
Abstract (English):
The history of the study of the interaction of water with hydrophilic surfaces, including the phenomenon of "polywater", is briefly considered. On the example of glass objects immersed in water, the formation of an "exclusion zone" (EZ) was traced, the decrease in the ion concentration in the EZ and its liquid crystal structure was confirmed. It is shown that EZ is formed both under illumination and in darkness. Molecular mechanisms of formation and growth of EZ are considered, which are based on physical adsorption caused by a decrease in the free energy of the system. The presence of cations in water significantly influences the formation of EZ. The nature of the effect is determined by the size of the cation (the density of surface charges). Based on literature data and the results of the study, the unified nature of the formation of hydrated shells around ions and the organization of EZ is discussed.

Keywords:
water, hydrophilic surfaces, EZ, physical adsorption, glass hydration
Text
Publication text (PDF): Read Download
References

1. Henniker J.C. The depth of the surface zone of a liquid. Rev. Mod. Phys., 1949, vol. 21, iss. 2, pp. 322-341.

2. Deryagin B.V., Churaev N.V., Fedyakin N.N., Talaev M.V., Ershova I.G. Modificirovannoe sostoyanie vody i drugih zhidkostey. Izv. AN SSSR, seriya himich., 1967, № 10, c. 2178. [Derjagin B.V., Churaev N.V., Fedyakin N.N., Talaev M.V., Ershova I.G. Modified state of water and other liquids. Izvestiya Akademii Nauk SSSR, seriya khimicheskaya, 1967, no. 10, p. 2178. (In Russ.)]

3. Gould S.J. The Mismeasure of Man. Norton, 1996, 448 p.

4. Franks F. Polywater. Cambridge, MA: The MIT Press, 1982, 208 p.

5. Deryagin B.V. Novye dannye o sverhplotnoy vode. Uspehi fizicheskih nauk, 1970, t. 100, № 4, cc. 726-728. [Derjagin B.V. New data on superdense water. Uspehi fizicheskih nauk, 1970, vol. 100, iss. 4, pp. 726-728. (In Russ.)]

6. Deryagin B. Anomal'naya voda - gipotezy i fakty, URL: o8ode.ru/article/water/udivit/anomalwater.htm, 11.03.2007. [Derjagin B. Abnormal water - hypotheses and facts, URL: o8ode.ru/article/water/udivit/anomalwater.htm, 11.03.2007 (In Russ.)]

7. Lippincott E.R., Stromberg R.R., Grant W.H., Cessac G.L. Polywater. Science, 1969, vol. 164, pp. 1482-1487.

8. Rousseau D.L., Porto S.P.S. Polywater: polymer or artifact? Science, 1970, vol. 167, pp. 1715-1719.

9. Davis R.E., Rousseau D.L., Board R.D. “Polywater”: Evidence from electron spectroscopy for chemical analysis (ESCA) of a complex salt mixture. Science, 1971, vol. 171, pp. 167-170.

10. Kurtin S.L., Mead C.A., Mueller W.A., Kurtin B.C., Wolf E.D. “Polywater”: a hydrosol? Science, 1970, vol. 167, pp. 1720 -1722.

11. Rousseau D.L. “Polywater” and sweat: similarities between the infrared spectra. Science, 1971, vol. 171, pp. 170-172.

12. Ginzburg V.L. Kakie problemy fiziki i astrofiziki predstavlyayutsya seychas osobenno vazhnymi i interesnymi? UFN, 1971, t. 103, № 87, s. 93-94. [Ginzburg V.L. What problems of physics and astrophysics seem to be especially important and interesting? Uspehi fizicheskih nauk, 1971, vol. 103, no. 87, pp. 93-94. (In Russ.)]

13. Derjaguin B.V., Churaev N.V. Nature of “Anomalous Water”. Nature, 1973, vol. 244, pp. 430-431.

14. Derjagin B.V., Sorin Z.V., Rabinovich Ya.I., Churaev N.V. Rezults of analytical investigation of the composition of “anomalous” water. Journal of colloid and Interface science, 1974, vol. 46, iss. 3, pp. 437-441.

15. Deryagin B.V. Mir kolloidno-poverhnostnyh yavleniy. Vestnik AN SSSR. Rubrika «Iz rabochey tetradi issledovatelya», 1990, № 9, s. 68-75. [Derjagin B.V. The world of colloid-superficial phenomena. Vestnik Akademii Nauk SSSR. The heading "From the notebook of the researcher", 1990, no. 9, pp. 68-75. (In Russ.)]

16. Pollack G. The fourth phase of water: beyond solid, liquid, and vapor. Ebner and Sons Publishers, 2013, 320 p.

17. Zheng J., Chin W.-C., Khijniak E., Khijniak E. Jr., Pollack G. Surfaces and interfacial water: evidence that hidrophylic surfaces have long-range impact. ACIS, 2006, vol. 127, pp. 19-27.

18. Yoo H., Paranji R., Pollack G. Impact of hydrophilic surfaces on interfacial water dynamics probed with NMR spectroscopy. J. Phys. Chem. Lett., 2011, vol. 2, iss. 6, pp. 532-536.

19. Rohani M., Pollack G. Flow through horizontal tubes submerged in water in the absence of a pressure gradient: mechanistic considerations. Langmuir, 2013, vol. 29, pp. 6556-6561.

20. So E., Stahlberg R. & Pollack G. H. Exclusion zone as intermediate between ice and water. WIT Transactions on Ecology and the Environment, 2011, vol. 153, p. 9.

21. Bunkin N.F., Ignatiev P.S., Kozlov V.A., Shkirin A.V., Zakharov S.D., Zinchenko A.A. Study of the phase states of water close to nafion interface. Water, 2013, vol. 1, DOI: 10.14294.

22. Bunkin N.F., Gorelik V.S., Kozlov V.A., Shkirin A.V., Suyazov N.V. Colloidal Crystal Formation at the “Nafion-Water” Interface. J. Phys. Chem. B, 2014, vol. 118, iss.12, pp. 3372-3377, DOI:https://doi.org/10.1021/jp4100729.

23. Gudkov S.V., Astashev M.E., Bruskov V.I., Kozlov V.A., Zakharov S.D., Bunkin N.F. Self-oscillating water chemiluminescence modes and reactive oxygen species generation induced by laser irradiation; effect of the exclusion zone created by nafion. Entropy, 2014, vol. 16, pp. 6166-6185, DOI:https://doi.org/10.3390/e16116166.

24. Bunkin N.F., Kozlov V.A., Aliev I.N., Molchanov I.I., Abdullaev S.A., Belosludtsev K.N., Astashev M.E., Gudkov S.V. Investigation of the phase states of aqueous salt solutions near a polymer membrane surface. Physics of Wave Phenomena, 2015, Vol. 23, iss. 4, pp. 255-264.

25. Astashev M.E., Gudkov S.V., Le Chevalier L., Kozlov V.A., Tuan V.M., Molchanov I.I., Bunkin N.F. Non-invasive laser diagnostics of swelling nafion in water and aqueous solutions of salts. Water conference, 2016.

26. Segarra-Martí J., Roca-Sanjuán D., Merchán M. Can the hexagonal ice-like model render the spectroscopic fingerprints of structured water? Feedback from quantum-chemical computations. Entropy, 2014, vol. 16, pp. 4101-4120, DOI:https://doi.org/10.3390/e16074101.

27. URL: vegasd.ru/whats_glass_surface.

28. Vagner G.A. Nauchnye metody datirovaniya v geologii, arheologii i istorii. M.: Tehnosfera, 2006, 575 s. [Wagner G.A. Scientific methods of dating in geology, archeology and history. M.: Technosfera, 2006, 575 p. (In Russ.)]

29. Marchenko R.T. Fizicheskaya i kolloidnaya himiya. M.: Vysshaya shkola, 1965, 374 s. [Marchenko R.T. Physical and colloid chemistry. M.: Visshaya Shkola, 1965, 374 p. (In Russ.)]

30. Robinson R., Stoks R. Rastvory elektrolitov. Moskva: IL, 1963, 643 s. [Robinson R., Stokes R. Solutions of electrolytes. M: Inostrannaya Literatura, 1963, 643 p. (In Russ.)]

31. Yakhno T.A., Sanin A.G., Vacca C.V., Falcione F., Sanina O.A., Kazakov V.V., Yakhno V.G. A new technology for studying multicomponent liquids using a quartz crystal resonator: theory and applications. Technical Physics, 2009, vol. 54, iss. 10, pp. 1423-1430.

32. Yakhno T.A., Sanin A.G., Sanina O.A., Yakhno V.G. Dynamics of mechanical properties of drying drops of biological liquids as a reflection of the features of self-organization of their components from nano- to microlevel. Biophysics, 2011, vol. 56, iss. 6, pp. 1005-1010.

33. Tychinsky V. High electric susceptibility is the signature of structured water in water-containing objects. Water, 2011, DOI:https://doi.org/10.14294/Water.2011.8.

34. Verdel N., Jerman I., Krasovec P. Conductivity measurements as a possible means to measure the degree of water ordering. Journal of Physics: Conference Series, 2011, vol. 329, pp. 1-8.

35. Verdel N., Jerman I., Bukovec P. The “autothixotropic” phenomenon of water and its role in proton transfer. Int. J. Mol. Sci., 2011, vol. 12, pp. 7481-7494, DOI:https://doi.org/10.3390/ijms 12117481.

36. Afanas'ev V.N., Zaycev A.A. Osobennosti strukturnogo sostoyaniya rastvoritelya v rastvorah elektrolitov. Zhurnal strukturnoy himii, 2006, t. 47, c. 94-101. [Afanasyev V.N., Zaitsev A.A. Features of the structural state of the solvent in electrolyte solutions. Zhurnal Structurnoi Himii, 2006, vol. 47, pp. 94-101. (In Russ.)]

37. Afanas'ev V.N. Kolichestvennaya ocenka razryvnoy funkcii rastvoritelya v vodnyh rastvorah elektrolitov. Zhurnal strukturnoy himii, 2013, t. 54, № 1, s. 82-94. [Afanasyev V.N. Quantitative evaluation of the discontinuous function of a solvent in aqueous solutions of electrolytes. Zhurnal Structurnoi Himii, 2013, vol. 54, no. 1, pp. 82-94. (In Russ.)]

38. Agmon N. The Grotthuss mechanism. Chem. Phys. Lett., 1995, vol. 244, iss. 5, pp. 456-462.

39. Karapet'yanc M.H., Drakin S.I. Obschaya i neorganicheskaya himiya. M.: Himiya, 2000, 591 s. [Karapetyants M.Kh., Drakin S.I. General and inorganic chemistry. M.: Khimiya, 2000, 591 p. (In Russ.)]

40. Frolov V.V. Himiya. M: Vysshaya shkola, 1986, 544 s. [Frolov V.V. Chemistry. M: Visshaya Shkola, 1986, 544 p. (In Russ.)]

41. Ewing G.E. Ambient thing film water on insulator surfaces. Chem. Rev., 2006, vol. 106, pp. 1511-1526.

42. Engkyist O., Stone A.J. Adsorption of water on NaCl(001). I. Intermolecular potentials and low temperature structures. The Journal of Chemical Physics, 1999, vol. 110, p. 12089, DOI:https://doi.org/10.1063/1.479144.

43. Foster M., Ewing G.E. Adsorption of water on the NaCl(001) surface. II. An infrared study at ambient temperatures. The Journal of Chemical Physics, 2000, vol. 112, p. 6817, DOI:https://doi.org/10.1063/1.481256.

44. Langmiuir I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc., 1918, vol. 40, iss. 9, pp. 1361-1403, DOI:https://doi.org/10.1021/ja02242a004.

45. Spagnoly C., Loos K., Ulman A., Cowman M. K. Imaging structured water and bound polysaccharide on mica surface at ambient temperature. J. Am. Chem. Soc., 2003, vol. 125, iss. 23, pp. 7124-7128.

46. Aarts I.M.P., Pipino A.C.R., Hoefnagels J.P.M., Kessels W.M.M., van de Sanden M.C.M. Quasi-ice monolayer on atomically smooth amorphous SiO2 at room temperature observed with a high-finesse optical resonator. Phys. Rev. Lett., 2005, vol. 95, p. 166104.

47. Asay D.B., Kim S.H. Evolution of the adsorbed water layer structure on silicon oxide at room temperature. J. Phys. Chem. B., 2005, vol. 109, pp. 16760-16763.

48. Teschke O. Imaging ice-like structures formed on HOPG at room temperature. Langmuir, 2010, vol. 26, iss. 22, pp. 16986-16990.

49. Wang Ya, Duan Zh., Fan D. An ion diffusion method for visualizing a solid-like water nanofilm. Scientific Reports, 2013, vol. 3, p. 3505, DOI:https://doi.org/10.1038/screp03505.

50. N'yuton I. Matematicheskie nachala natural'noy filosofii. M: Nauka, 1989, s. 501-504. [Newton I. Mathematical Principles of Natural Philosophy. M: Nauka, 1989, p. 501-504. (In Russ.)]


Login or Create
* Forgot password?