Pushchino, Moscow, Russian Federation
It was shown that a 1.5 hour-long exposure of mouse peritoneal neutrophils to a combination of a weak constant magnetic field (42 μT) and low-frequency alternating magnetic field collinear to the weak constant magnetic field (the sum of the frequencies 1.0, 4.4, and 16.5 Hz; amplitude, 0.86 μT) at physiological temperatures caused an increase in the intracellular production of reactive oxygen species, as measured by the changes in fluorescence of the products of 2,7-dichlorodihydrofluorescein and dihydrorhodamine 123 oxidation. The effect of weak magnetic fields was significantly more pronounced in the presence of low concentrations of respiratory burst activators (N-formyl-Met-Leu-Phe or phorbol-12-meristate-13-acetate). In contrast, exposure of neutrophils under magnetic shielding in hypomagnetic conditions (residual static magnetic field of 20 nT) causes a decrease in intracellular production of reactive oxygen species. The effect of the hypomagnetic field is observed after respiratory burst activators applied at low concentrations are additionally added.
magnetic field, hypomagnetic field, neutrophils, blood, reactive oxygen species, fluorescence
1. Bingi V.N. Principy elektromagnitnoy biofiziki. M: Fizmatlit, 2011, 592 s. [Binhi V.N. Principles of Electromagnetic Biophysics. Moscow: Fizmatlit, 2011, 592 p. (In Russ.)]
2. Novikov V.V., Ponomarev V.O., Novikov G.V., Kuvichkin V.V., Yablokova E.V., Fesenko E.E. Effekty i molekulyarnye mehanizmy biologicheskogo deystviya slabyh i sverhslabyh magnitnyh poley. Biofizika, 2010, t. 55, № 4, s. 631-639. [Novikov V.V., Ponomarev V.O., Novikov G.V., Kuvichin V.V., Yablokova E.V. Fesenko E.E. Effects and molecular mechanisms of the biological action of weak and extremely weak magnetic fields. Biophysics, 2010, vol. 55, no. 4, pp. 631-639. (In Russ.)]
3. Buchachenko A.L. Magnitno-zavisimye molekulyarnye i himicheskie processy v biohimii, genetike i medicine. Uspehi himii, 2014, t. 83, № 1, s. 1-12. [Buchachenko A.L. Magnetic-dependent molecular and chemical processes in biochemistry, genetics and medicine. Usp. Khim, 2014, vol. 83, no. 1, pp. 1-12. (In Russ.)]
4. Ponomarev V.O., Novikov V.V. Deystvie nizkochastotnyh peremennyh magnitnyh poley na skorost' biohimicheskih reakciy, privodyaschih k obrazovaniyu aktivnyh form kisloroda. Biofizika, 2009, t. 54, № 2, s. 235-241. [Ponomarev V.O., Novikov V.V. Effect of low-frequency alternating magnetic fields on the rate of biochemical reactions proceeding with formation of reactive oxygen species. Biophysics, 2009, vol. 54, no. 2, pp. 235-241. (In Russ.)]
5. Novikov V.V., Yablokova E.V., Fesenko E.E. Deystvie kombinirovannyh magnitnyh poley s ochen' slaboy peremennoy nizkochastotnoy komponentoy na lyuminolzavisimuyu hemilyuminescenciyu krovi mlekopitayuschih. Biofizika, 2015, t. 60, № 3, s. 530-533. [Novikov V.V., Yablokova E.V., Fesenko E.E. The action of combined magnetic fields with a very weak low-frequency alternating component on luminol-dependent chemiluminescence in mammalian blood. Biophysics, 2015, vol. 60, no. 3, pp. 530-530. (In Russ.)]
6. Novikov V.V., Yablokova E.V., Fesenko E.E. Deystvie slabyh magnitnyh poley na hemilyuminescenciyu krovi cheloveka. Biofizika, 2016, t. 61, № 1, s. 126-130. [Novikov V.V., Yablokova E.V., Fesenko E.E. The effect of weak magnetic fields on the chemiluminescence of human blood. Biophysics, 2016, vol. 61, no. 1, pp. 126-130. (In Russ.)]
7. Novikov V.V., Yablokova E.V., Fesenko E.E. Praymirovanie respiratornogo vzryva u neytrofilov in vitro pri deystvii slabyh kombinirovannyh postoyannogo i nizkochastotnogo peremennogo magnitnyh poley. Biofizika, 2016, t. 61, № 3, s. 510-515. [Novikov V.V., Yablokova E.V., Fesenko E.E. Priming of the respiratory burst in neutrophils exposed to a combination of weak constant and alternating low-frequency magnetic fields in vitro. Biophysics, 2016, vol. 61, no. 3, pp. 510-515. (In Russ.)]
8. Novikov V.V., Yablokova E.V., Fesenko E.E. Vliyanie slabyh magnitnyh poley na produkciyu aktivnyh form kisloroda v neytrofilah. Biofizika, 2016, t. 61, № 6, s. 1159-1163. Novikov V.V., Yablokova E.V., Fesenko E.E. The effect of weak magnetic fields on the production of reactive oxygen species in neutrophils. Biophysics, 2016, vol. 61, no. 6, pp. 1159-1163. (In Russ.)]
9. Novikov V.V., Yablokova E.V., Fesenko E.E. Rol' gidroksil'nyh radikalov i ionov kal'ciya v praymirovanii respiratornogo vzryva v neytrofilah i usilenii lyuminol-zavisimoy hemilyuminescencii krovi pri deystvii kombinirovannyh magnitnyh poley s ochen' slaboy peremennoy nizkochastotnoy komponentoy. Biofizika, 2017, t. 62, № 3, s. 547-551. [Novikov V.V., Yablokova E.V., Fesenko E.E. Biophysics, 2017, vol. 62, no. 3, pp. 547-551. (In Russ.)]
10. Novikov V.V., Yablokova E.V., Novikov G.V., Fesenko E.E. Rol' lipidnoy peroksidacii i mieloperoksidazy v praymirovanii respiratornogo vzryva v neytrofilah pri deystvii kombinirovannyh postoyannogo i peremennogo magnitnyh poley. Biofizika, 2017, t. 62, № 5, s. 926-931. [Novikov V.V., Yablokova E.V., Novikov G.V., Fesenko E.E. Biophysics, 2017, vol. 62, no. 5, pp. 926-931. (In Russ.)]
11. Novikov V.V., Yablokova E.V., Fesenko E.E. Rol' kisloroda v prayminge neytrofilov pri deystvii slabogo magnitnogo polya. Biofizika, 2018, t. 63, № 2, s. 277-281. [Novikov V.V., Yablokova E.V., Fesenko E.E. The role of oxygen in the priming of neutrophils on exposure to a weak magnetic field. Biophysics, 2018, vol. 63, no. 2, pp. 277-281. (In Russ.)]
12. Novikov V.V., Yablokova E.V., Fesenko E.E. Vliyanie «nulevogo» magnitnogo polya na produkciyu aktivnyh form kisloroda v neytrofilah. Biofizika, 2018, t. 63, № 3, s. 484-488. [Novikov V.V., Yablokova E.V., Fesenko E.E. The effect of «zero» magnetic field on production of reactive oxygen species in neutrophils. Biophysics, 2018, vol. 63, no. 3, pp. 484-488. (In Russ.)]
13. Crow J.P. Dichlorodihydrofluorescein and dihydrorhodamine 123 are sensitive indicators of peroxynitrite in vitro: implications for intracellular measurement of reactive nitrogen and oxygen species. Nitric Oxide: Biology and Chemistry, 1997, vol. 1, iss. 2, pp. 145-157.
14. Hempel S.L., Buettner G.R., O'Malley Y.Q., Wessels D.A., Flaherty D.M. Dihydrofluorescein diacetate is superior for detecting intracellular oxidants: comparison with 2',7'-dichlorodihydrofluorescein diacetate, 5(and 6)-carboxy-2',7'-dichlorodihydrofluorescein diacetate, and dihydrorhodamine 123. Free Radic Biol Med, 1999, vol. 27, iss. 1-2, pp. 146-159.
15. Bartosz G. Use of spectroscopic probes for detection of reactive oxygen species. Clin Chim Acta, 2006, vol. 368, pp. 53-76.
16. Freitas M., Lima J.L., Fernandes E. Optical probes for detection and quantification of neutrophils oxidative burst. Anal Chim Acta, 2009, vol. 649, pp. 8-23.
17. Novikov V.V., Novikov G.V., Fesenko E.E. Effect of weak combined static and extremely low-frequency alternating magnetic fields on tumor growth in mice bearing the Ehrlich ascites carcinoma. Bioelectromagnetics, 2009, vol. 30, pp. 343-351.
18. Vladimirov Yu.A., Proskurina E.V. Svobodnye radikaly i kletochnaya hemilyuminescenciya. Uspehi biologicheskoy himii, 2009, t. 49, s. 341-388. [Vladimirov Yu.A., Proskurina E.V. Free radicals and cellular chemiluminescence. Usp. Biol. Himii, 2009, vol. 49, pp. 341-388. (In Russ.)]
19. Mayanskiy A.N. NADFN-oksidaza neytrofilov: aktivaciya i regulyaciya. Citokiny i vospalenie, 2007, t. 6, № 3, s. 3-13. [Mayanskiy A.N. NADPH-oxidase of neutrophils: activation and regulation. Cytokines and inflammation, 2007, vol. 6, no. 3, pp. 3-13. (In Russ.)]
20. Vorob'eva N.V. NADPH-oksidaza neytrofilov i zabolevaniya, svyazannye s ee disfunkciey. Immunologiya, 2013, t. 34, № 4, s. 227-233. [Vorobyova N.V. NADPH-oxidase of neutrophils and diseases associated with its dysfunction. Immunology, 2013, vol. 34, no. 4, pp. 227-233. (In Russ.)]
21. El-Benna J., Dang P.M., Gougerot-Pocidalo M.A. Priming of the neutrophil NADPH oxidase activation: role of p47phox phosphorylation and NOX2 mobilization to the plasma membrane. Semin Immunopathol., 2008, vol. 30, pp. 279-289.
22. Sheppard F.R., Kelher M.R., Moore E.E. et al. Structural organization of the neutrophil NADPH oxidase: phosphorylation and translocation during priming and activation. J. Leukocyte Biol., 2005, vol. 78, pp. 1025-1042.