CELL SEPARATION BY BARRIER CONTACTLESS DIELECTROPHORESIS
Abstract and keywords
Abstract (English):
A design of a separation device and a method for microbiological samples separation based on barrier contactless dielectrophoresis are proposed. The principle of operation of the separation device is based on the formation of dielectrophoretic barriers in the volume of the separation chamber. The suggested method is highly efficient and easy to use in comparison with traditional planar dielectrophoresis systems. The feature of the method is the absence of contact between the separated samples and the conductive elements of the electrode structure. A computer simulation of the distribution of electric field over the dielectrophoretic barriers was carried out, and the effect of the thickness of the insulating coating on the dielectrophoretic properties of the barriers was shown. Based on the computer simulation data, the forces acting on the particle (a yeast cell with a diameter of 7 μm) in the separation chamber were estimated. The possibility of cell retention on cDEP barriers is theoretically predicted and experimentally confirmed using the example of yeast Saccharomyces cerevisiae .

Keywords:
cell separation, barrier contactless dielectrophoresis
Text
Text (PDF): Read Download
References

1. Hsiung L.-C., Chiang C.-L., Wang C.-H., [et. al.] Dielectrophoresis-based cellular microarray chip for anticancer drug screening in perfusion microenvironments. Lab. Chip., 2011, vol. 11, pp. 2333-2342, DOI:https://doi.org/10.1039/C1LC20147F.

2. Laux E.M., Kaletta U.C., Bier F.F., [et. al.] Functionality of dielectrophoretically immobilized enzyme molecules. Electrophoresis, 2014, vol. 35, pp. 459-466, DOI:https://doi.org/10.1002/elps.201300447.

3. Ivanoff C.S., Hottel T.L., Garcia-Godoy F. Dielectrophoresis: A model to transport drugs directly into teeth. Electrophoresis, 2012, vol. 33, pp. 1311-1321, DOI:https://doi.org/10.1002/elps.201100505.

4. Pethig R., Markx G.H. Applications of dielectrophoresis in biotechnology. Trends in Biotechnology, 1997, vol. 15, p. 426, DOI:https://doi.org/10.1016/S0167-7799(97)01096-2.

5. Huang S.-B., Wu M.-H., Lin Y.-H., [et. al.] High-purity and label-free isolation of circulating tumor cells (CTCs) in a microfluidic platform by using optically-induced-dielectrophoretic (ODEP) force. Lab. Chip., 2013, 13, pp. 1371-1383, DOI:https://doi.org/10.1039/C3LC41256C.

6. Shenoy A., Tanyeri M., Schroeder C.M. Characterizing the performance of the hydrodynamic trap using a control-based approach. Microfluid Nanofluid, 2015, vol. 18, pp. 1055-1066, DOI:https://doi.org/10.1007/s10404-014-1495-7.

7. Podoynitsyn S.N., Sorokina O.N., Kovarski A.L. High-gradient magnetic separation using ferromagnetic membrane. J. Magn. Magn. Mater., 2016, 397, pp. 51-56, DOI:https://doi.org/10.1016/j.jmmm.2015.08.075.

8. Gupta V., Jafferji I., Garza M., [et. al.] ApoStreamTM, a new dielectrophoretic device for antibody independent isolation and recovery of viable cancer cells from blood. Biomicrofluidics, 2012, vol. 6, no. 2, e024133, DOI: 0.1063/1.4731647.

9. Turgeon R.T., Bowser M.T. Micro free-flow electrophoresis: theory and applications. Anal Bioanal Chem., 2009, vol. 394, no. 1, 187-198, DOI:https://doi.org/10.1007/s00216-009-2656-5.

10. Yahya W.N., Kadri N.A., Ibrahim F. Cell patterning for liver tissue engineering via dielectrophoretic mechanisms. Sensors (Basel), 2014, vol. 14, no. 7, pp. 11714-34, DOI:https://doi.org/10.3390/s140711714.

11. Braff W.A., Willner D., Hugenholtz P., [et. al.] Dielectrophoresis-Based Discrimination of Bacteria at the Strain Level Based on Their Surface Properties. PLoS One, 2013, vol. 8, e76751, DOI:https://doi.org/10.1371/journal.pone.0076751.

12. Markx G.H., Huang Y., Zhou X.-F., [et al.] Dielectrophoretic characterization and separation of microorganisms. Microbiology, 1994, vol. 140, pp. 585-591, DOI:https://doi.org/10.1099/00221287-140-3-585.

13. Vykoukal J., Vykoukal D.M., Freyberg S., [et. al.] Enrichment of putative stem cells from adipose tissue using dielectrophoretic field-flow fractionation. Lab. Chip., 2008, vol. 8, pp. 1386-1393, DOI:https://doi.org/10.1039/B717043B.

14. Liu D., Garimella S.V. Microfluidic pumping based on traveling-wave dielectrophoresis. CTRC Research Publications, 2009, paper 120, pp. 1-43, DOI:https://doi.org/10.1080/15567260902892713.

15. Lapizco-Encinas B.H., Cummings B.A., Simmons E.B., [et. al.] Dielectrophoretic concentration and separation of live and dead bacteria in an array of insulators. Anal. Chem., 2004, vol. 76, no. 6, pp. 1571-1579, DOI:https://doi.org/10.1021/ac034804j.

16. Čemažar J., Douglas T.A., Schmelz E.M., [et. al.] Enhanced contactless dielectrophoresis enrichment and isolation platform via cell-scale microstructures. Biomicrofluidics, 2016, vol. 10, e014109, DOI:https://doi.org/10.1063/1.4939947.

17. Dürr M., Kentsch J., Müller T., Schnelle Th., Stelzle M. Microdevices for manipulation and accumulation of micro- and nanoparticles by dielectrophoresis. Electrophoresis, 2003, vol. 24, pp. 722-731, DOI:https://doi.org/10.1002/elps.200390087.

18. Qian Ch., Huang H., Chen L., [et. al.] Dielectrophoresis for Bioparticle Manipulation. Int. J. Mol. Sci., 2014, vol. 15, pp. 18281-18309, DOI:https://doi.org/10.3390/ijms151018281.

19. Lee D., Hwang B., Choi Y., [et al.] Negative dielectrophoretic force based cell sorter with simplified structure for high reliability. International Journal of Precision Engineering and Manufacturing, 2016, vol. 17, no. 2, pp. 247-251, DOI:https://doi.org/10.1007/s12541-016-0032-x.

20. H. Shafiee, J.L. Caldwell, M.B. Sano, R.V. Davalos Contactless dielectrophoresis: a new technique for cell manipulation. Biomed Microdevices, 2009, vol. 11, pp. 997-1006, DOI:https://doi.org/10.1007/s10544-009-9317-5.

21. Park S., Zhang Y., Wang T.-H., [et. al.] Continuous dielectrophoretic bacterial separation and concentration from physiological media of high conductivity. Electronic Supplementary Material (ESI) for Lab on a Chip, 2011, vol. 11, pp. 2893-2900, DOI:https://doi.org/10.1039/c1lc20307j.

22. Price J.A.R., Butt J.P.H., Pethig R. Applications of a new optical technique for measuring the dielectrophoretic behaviour of microorganisms. Biochim. Biophys. Acta., 1988, vol. 964, pp. 221-230, DOI:https://doi.org/10.1016/0304-4165(88)90170-5.

23. Markx G.H., Talary M.S., Pethig R. Separation of viable and nonviable yeast using dielectrophoresis. Journal of Biotechnology, 1994, vol. 32, pp. 29-37, DOI:https://doi.org/10.1016/0168-1656(94)90117-1.

24. Fikar P., Babuska V., Georgiev V., Rousseau G., Zach P., Georgiev D. Dependence of dielectrophoretic forces on membrane proteins. Poster presented at The Sixth International Meeting on Synthetic Biology, London, Great Britain, 2013.


Login or Create
* Forgot password?