The aim of this work was to study low static external magnetic field effects 0-100 mT on the growth and development of E. coli bacteria. A large number of experimental points in this range, ongoing growth of bacteria in a magnetic field and the registration of changes in the physiological characteristics (CFU, growth rate) and biochemical parameters (ATP pool) guaranteed an obtainment reliable results. The colony-forming ability, growth rate constant and ATP pool in Escherichia coli bacteria are the magnetic-dependent characteristics of microorganism vital activity. They depend on the external static magnetic field and increase when its value lies in ranges 0-10 mT and 15-50 mT. The magnetic field rising from 50 to 100 mT leads to bacterial growth inhibition. All observed effects in bacteria E. coli are in good agreement with a theory of the enzymatic magnetosensitivity and determined by the spin dependent stages of intracellular enzymatic processes.
E. Coli, magnetic field, ATP
1. Ahuja Y.R., Vijayashree B., Saran, R., Jayashri, E.L., Manoranjani, J.K., Bhargava S.C. In vitro effects of low-level, low-frequency electromagnetic fields on DNA damage in human leucocytes by comet assay. Indian J. Biochem. Biophys., 1999, vol. 36, no. 5, pp. 318-322.
2. Kohno M., Yamazaki M., Kimura I., Wada M. Effect of static magnetic fields on bacteria: Streptococcus mutans, Staphylococcus aureus, and Escherichia coli. Pathophysiology, 2000, vol. 7, pp. 143-148.
3. Molouk M., Alkhazan K., Amna, A.N. The effect of magnetic field on the physical, chemical and microbiological properties of the lake water in Saudi Arabia. J. Evol. Biol. Res., 2010, vol. 2, pp. 7-14.
4. Albuquerque, W.W., Costa, R.M., Fernandes, Tde. S., Porto A.L. Evidences of the static magnetic field influence on cellular systems. Progress in Biophysics and Molecular Biology, 2016, vol. 121, no. 1, 16-28.
5. Nakasono S., Saiki H. Effect of ELF magnetic fields on protein synthesis in Escherichia coli K12. Radiat Res., 2000, vol. 154, pp. 208-216.
6. Makarevich V. Effect of magnetic fields of magnetoplastics on the growth of microoorgasnisms. Biophysics, 1999, vol. 44, pp. 65-69.
7. Okuno K, Tuchiya K., Ano T., Shoda M. Effect of super high magnetic field on the growth of Escherichia coli under various medium compositions and temperature. J. Ferment. Bioeng., 1993, vol. 75, pp. 103-106.
8. Kimball G.C. The growth of yeast in a magnetic field. J. Bacteriol., 1938, vol. 35, no. 2, pp. 109-122.
9. Binhi V.N. Magnetobiology underlying physical problems. Tokyo: Academic Press, 2002, 473 p.
10. Schuler D. Magnetoreception and Magnetosomes in Bacteria. Berlin: Springer, 2007, 319 p.
11. Rodgers C.T., Hore P.J. Chemical magnetoreception in birds: The radical pair mechanism. PNAS, 2009, vol. 106, no. 2, pp. 353-360.
12. Wiltschko W., Wiltschko R. Magnetic orientation and magnetoreception in birds and other animals. Journal of Comparative Physiology A, 2005, vol. 191, no. 8, pp. 675-693.
13. Lohmann K.J. Q&A: Animal behaviour: Magnetic-field perception. Nature, 2010, vol. 464, no. 7292, pp. 1140-1142.
14. Brocklehurst B. Magnetic fields and radical reactions: recent developments and their role in nature. Chemical Society Reviews, 2002, vol. 31, pp. 301-311.
15. Letuta U.G., Berdinskiy V.L., Udagawa C., Tanimoto, Y. Enzymatic mechanisms of biological magnetic sensitivity. Bioelectromagnetics, 2017. (In print)
16. Shevchenko, U.G., Berdinskii, V.L. Enzymic processes as a mechanism of biological magnetoreception. Russian Journal of Physical Chemistry B, 2011, vol. 5, no. 3, pp. 519-524.
17. Letuta, U.G., Berdinskii, V.L. Enzymatic mechanisms of biological magnetic sensitivity: Nuclear spin effects. Russian Chemical Bulletin, 2015, vol. 64, no. 7, pp. 1547-1554.
18. Buchachenko A.L. Magnetic isotope effect in chemistry and biochemistry. New York: Nova Science Publishers, 2009, pp. 83-88.
19. Buchachenko, A.L. Magnetic field-dependent molecular and chemical processes in biochemistry, genetics and medicine. Russian Chemical Reviews, 2014, vol. 83, vol. 1, pp. 1-12.
20. Buchachenko, A.L., Kuznetsov, D.A., Arkhangelsky, S.E., Orlova, M.A., Markaryan, A.A. Magnetic isotope effect of magnesium in phosphoglycerate kinase phosphorylation. Proceedings of the National Academy of Sciences USA, 2005, vol. 102, pp. 10793-10796.
21. Buchachenko A.L., Kuznetsov D.A., Arkhangelsky S.E., Orlova M.A., Markaryan A.A. Dependence of mitochondrial ATP synthesis on the nuclear magnetic moment of magnesium ions. Cell Biochemistry Biophysics, 2005, vol. 43, pp. 243-252.
22. Buchachenko A.L., Kuznetsov D.A., Breslavskaya N.N., Shchegoleva L.N., Arkhangelsky S.E. Calcium induced ATP synthesis: Isotope effect, magnetic parameters and mechanism. Chemical Physics Letters, 2011, vol. 505, no. 4-6, pp. 130-134.
23. Buchachenko A.L., Chekhonin V.P., Orlov A.P., Kuznetsov D.A. Zinc-related magnetic isotope effect in the enzymatic ATP synthesis: a medicinal potential of the nuclear spin selectivity phenomena. International Journal of Molecular Medicine and Advance Sciences, 2010, vol. 6, no. 3, pp. 34-37.
24. Buchachenko A.L., Orlov A.P., Kuznetsov D.A., Breslavskaya N.N. Magnetic control of the DNA synthesis. Chemical Physics Letters, 2013, vol. 586, pp. 138-142.
25. Buchachenko A.L., Orlov A.P., Kuznetsov D.A., Breslavskaya N.N. Magnetic isotope and magnetic field effects on the DNA synthesis. Nucleic Acids Research, 2013, vol. 41, no. 17, pp. 8300-8307.
26. Buchachenko A.L., Kuznetsov D.A. Magnetic field affects enzymatic ATP synthesis. Journal of the American Chemical Society, 2008, vol. 130, pp. 12868-12869.
27. Buchachenko A.L. Magneto-biology and medicine. New York: Nova Science Publishers, 2014.
28. Miyakoshi J. Effects of static magnetic fields at the cellular level. Progress in Biophysics and Molecular Biology, 2005, vol. 87, pp. 213-222.
29. Gerhardt Ph. Manual of methods for general bacteriology. Washington: American Society for Microbiology, 1981, r. 1069.
30. Goldman, E., Green, L.H. Practical Handbook of Microbiology, Second Edition. USA: CRC Press, 2008.
31. Ugarova N.N., Koksharov M.I., Lomakina, G.Y. The reagent for determination of adenosine5’ triphosphate. RU Patent no. 2420594, 2009, (In Russ.)
32. Ugarova N.N., Brovko L.Y., Trdatyan I.Y., Rainina E.I. Bioluminescent methods of analysis in Microbiology. Prikladnaya biochimiya I micribiologiya, 1987, vol. 23, pp. 14-24.
33. Buchachenko A.L., Vasserman A.M. Stable radicals. Electronic structure, reactivity and application. Moscow, Russia: Chimiya, 1973, 408 p.
34. Horiuchi S., Ishizaki Y., Okuno K., Ano T., Shoda M. Drastic high magnetic field effect on suppression of Escherichia coli death. Bioelectrochemistry, 2001, vol. 53, pp. 149-153.
35. Zhang Q.M., Tokiwa M., Doi T., Nakahara T., Chang P.W., Nakamura N., Hori M, Miyakoshi J., Yonei S. Strong static magnetic field and the induction of mutations through elevated production of reactive oxygen species in Escherichia coli sox R. International Journal of Radiation Biology, 2003, vol. 79, no. 4, pp. 281-286.
36. Yoshie S., Ikehata M., Hirota N., Takemura T., Minowa T., Hanagata N., Hayakawa T. Evaluation of mutagenicity and co-mutagenicity of strong static magnetic fields up to 13 Tesla in Escherichia coli deficient in superoxide dismutase. Journal of Magnetic Resonance Imaging, 2012, vol. 35, no. 3, pp. 731-736.