It was established that incubation of human erythrocytes with an intracellular chelator N’,N’-tetrakis(2-methyl-pyridyl)ethylenediamine (TPEN) in subhemolytic concentrations leads to a significant decrease in the Zn2+ intracellular pool and cells esterase activity rise. It was demonstrated that one of the possible mechanisms of an oxidative stress development in zinc deficient human erythrocytes is the inhibition of the main antioxidant enzymes activity - catalase and glutathione peroxidase as well as changes in the reduced glutathione concentration. It was found that decreased glutathione peroxidase activity exactly contributes to the erythrocyte esterases activation under zinc ions deficiency. An increased expression of the cysteine-rich proteins metallothioneins in human erythrocytes under simulation of the Zn-deficient state in vitro was revealed. It confirms the hypothesis about the functioning of these proteins as an auxiliary antioxidant in a protective cell system.
human erythrocytes, zinc deficiency, redox-state, zinc labile pool, esterase activity, antioxidant system, metallothioneins
1. Maret W., Li Y. Coordination dynamics of zinc in proteins. Chem. Rev., 2009, vol. 109, pp. 4682-4707.
2. Andreini C., Banci L., Bertini I., Rosato A. Counting the zinc-proteins encoded in the human genome. J. Proteome. Res., 2006, vol. 5, no. 1, pp. 196-201.
3. Garmaza Yu.M., Slobozhanina E.I. Eccencial'noct' i tokcichnoct' cinka. Biofizicheckie acpekty. Biofizika, 2014, t. 59, vyp. 2, s. 322-337. [Garmaza Yu.M., Slobozhanina E.I. Zinc essentiality and toxicity. Biophysical aspects. Biophysics, vol. 59, iss. 2, pp. 322-337. (In Russ.)]
4. Prasad A.S., Halsted J.A., Nadimi M. Syndrome of iron deficiency anemia, hepatosplenomegaly, hypogonadism, dwarfism and geophagia. Am. J. Med., 1961. vol. 31, pp. 532-546.
5. Moynahan E.J. Letter: Acrodermatitis enteropathica: A lethal inherited human zinc-deficiency disorder. Lancet, 1974, vol. 2, pp. 399-400.
6. Wang K., Zhou B., Kuo Y.M., Zemansky J., Gitschier J. A novel member of a zinc transporter family is defective in acrodermatitis enteropathica. Am. J. Hum. Genet., 2002, vol. 71, pp. 66-73.
7. Prasad A.S. Impact of the discovery of human zinc deficiency on health. J. Trace Elem. Med. Biol., 2014, vol. 28, no. 4, pp. 357-363.
8. Zago M.P., Oteiza P.I. The antioxidant properties of zinc: interactions with iron and antioxidants. Free Radic. Biol. Med., 2001, vol. 31, no. 2, pp. 266-274.
9. Oteiza P.I., Clegg M.S., Zago M.P., Keen C.L. Zinc deficiency induces oxidative stress and AP-1 activation in 3T3 cells. Free Radical Biol. Med., 2000, vol. 28, pp. 1091-1099.
10. Ho E., Ames B.N. Low intracellular zinc induces oxidative DNA damage, disrupts p53, Nfkappa B, and AP1 DNA binding, and affects DNA repair in a rat glioma cell line. Proc. Natl. Acad. Sci. U.S.A., 2002, vol. 99, pp. 16770-16775.
11. Song Y., Leonard S.W., Traber M.G., Ho E. Zinc deficiency affects DNA damage, oxidative stress, antioxidant defenses, and DNA repair in rats. J. Nutr., 2009, vol. 139, pp. 1626-1631.
12. Brennan A.M., Suh S.W., Won S.J., Narasimhan P., Kauppinen T.M., Lee H., Edling Y., Chan P.H., Swanson R.A. NADPH oxidase is the primary source of superoxide induced by NMDA receptor activation. Nat. Neurosci., 2009, vol. 12, pp. 857-863.
13. Paoletti A.M., Vergnano A.M., Barbour B., Casado M. Zinc at glutamatergic synapses. Neuroscience, 2009, vol. 158, pp. 126-136.
14. Gee K.R., Zhou Z.L., Ton-That D., Sensi S.L., Weiss J.H. Measuring zinc in living cells. A new generation of sensitive and selective fluorescent probes. Cell Calcium, 2002, vol. 31, no. 5, pp. 245-251.
15. Bratosin D., Mitrofan L., Palli C., Estaquier J. Novel fluorescence assay using Calcein-AM for the determination of human erythrocyte viability and aging. Cytometry A, 2005, vol. 66A, pp. 78-84.
16. Ellman G.L. Tissue sulfhydryl groups. Arch Biochem Biophys., 1959, vol. 82, no. 1, pp. 70-77.
17. Moin V.M. Prostoy i specificheskiy metod opredeleniya aktivnosti glutationperoksidazy v eritrocitah. Lab. Delo, 1986, № 12, s. 724-727. [Moin V.M. A simple and specific method for determining of the glutathione peroxidase activity in erythrocytes. Laboratory diagnostics, 1986, no. 12, pp. 724-727. (In Russ)]
18. Korolyuk M.A., Ivanova L.I., Mayorova I.G., Tokareva V.E. Metod opredeleniya katalaznoy aktivnosti. Lab. delo, 1988. № 1. c. 16-19. [Koroluk M.A., Ivanova L.I., Majorova I.G., Tokareva V.E. Method for the determination of catalase activity [Metod opredeleniya katalaznoy aktivnosti]. Laboratory diagnostics, 1988, no. 1, pp. 16-19. (in Russ)]
19. Anti-Metallothionein antibody [UC1MT]. 04.10.2015, URL: abcam.com/metallothionein-antibody-uc1mt-ab12228.html.
20. McCabe M.J., Jiang S.A., Orrenius S. Chelation of intracellular zinc triggers apoptosis in mature thymocytes. Lab. Invest., 1993, vol. 69, pp. 101-110.
21. Harmaza Y., Slobozhanina E. Zinc homeostasis and eryptosis. FEBS J., 2013, vol. 280, suppl. 1, p. 218.
22. Garmaza Yu.M., Tamashevskiy A.V., Goncharova N.V., Slobozhanina E.I. Vliyanie vnutrikletochnogo urovnya cinka v eritrocitah cheloveka na pereraspredelenie fosfatidilserina i ih zhiznesposobnost'. Novosti mediko-biologicheskih nauk, 2011, t. 3, № 1, s. 90-95. [Harmaza Y.M., Tamashevski A.V., Goncharova N.V., Slobozhanina E.I. News of biomedical sciences, 2011, vol, 3, no. 1, pp. 90-95. (in Russ)]
23. Garmaza Yu.M., Tamashevskiy A.V., Kanash Yu.S., Zubrickaya G.P., Kut'ko A.G., Slobozhanina E.I. Vnutrikletochnyy cink: rol' v N2O2-inducirovannom okislitel'nom stresse v eritrocitah cheloveka. Biofizika, 2016, t. 61, vyp. 6, s. 1149-1158. [Harmaza Y.M., Tamashevski A.V., Kanash J.S., Zubritskaya G.P., Kutko A.G., Slobozhanina E.I. Intracellular Zinc: a Role in H2O2-Induced Oxidative Stress in Human Erythrocytes. Biophysics, 2016, vol. 61, iss. 6, pp. 1149-1158. (in Russ)]
24. Garmaza Yu.M., Tamashevskiy A.V., Slobozhanina E.I. Metallotioneiny mlekopitayuschih: struktura i biologicheskaya rol'. Izvestiya NAN Belarusi. Seriya biol. nauk, 2016, no. 1, s. 107-116. [Harmaza Y.M., Tamashevski A.V., Slobozhanina E.I. Mammalian metalothioneins: structure and biological role. Proceedings of the National academy of sciences of Belarus, 2016, no. 1, pp. 107-116. (in Russ.)]
25. Min K.S., Tanaka N., Horie T., Kawano H., Tetsuchikawahara N., Onosaka S. Metalothionein-enriched hepatocytes are resistant to ferric nitriloacetate toxicity during conditions of glutathione depletion. Toxicol. Lett., 2005, vol. 158, pp. 108-115.
26. Gumulec J., Masarik M., Krizkova S., Adam V., Hubalek J., Hrabeta J., Eckschlager T., Stiborova M., Kizek R. Insight to physiology and pathology of zinc(II) ions and their actions in breast and prostate carcinoma. Curr. Med. Chem., 2011, vol. 18, pp. 5041-5051.
27. Formigari A., Santon A., Irato P. Efficacy of zinc treatment against iron-induced toxicity in rat hepatoma cell line H4-II-E-C3. Liver Int., 2007, vol. 27, pp. 120-127.
28. Eide D.J. The oxidative stress of zinc deficiency. Metallomics, 2011, vol. 3. pp. 1124-1129.