THE ROLE OF PHOTOCHEMICAL TRANSFORMATIONS OF TETRAHYDROBIOPTERIN IN THE PATHOGENESIS AND PHOTOTHERAPY OF VITILIGO
Abstract and keywords
Abstract (English):
Melanogenesis disorder leads to several pathologies, including vitiligo. Tetrahydrobiopterin (H4Bip) as the phenylalanine 4-hydroxylase coenzyme catalyzes the oxidation of phenylalanine to tyrosine (a melanin precursor). H4Bip is easily oxidized by oxygen in vivo and in vitro . Vitiligo is accompanied by three-fivefold increased de-novo synthesis of H4Bip, its excess and its further oxidation are essential factors in the pathogenesis of vitiligo. We have demonstrated that pterin products of H4Bip autoxidation (dihydropterin (H2Ptr), dihydroxanthopterin and pterin) predominate over biopterin products (dihydrobiopterin (H2Bip) and biopterin). It was shown that ultraviolet (UV) irradiation accelerates the autoxidation while the products of oxidative degradation of H4Bip act as photosensitizers. Photosensitized oxidation of H4Bip can contribute to the pathogenesis of vitiligo. The main distinguishing feature of UV photooxidation of H4Bip from autoxidation was the formation of dihydropterin (H2Ptr)2 and dihydrobiopterin (H2Bip)2 dimers.. Here we reported on the dependences of the photodimerization reaction on the wavelength and intensity of radiation using xenon lamps and UV tunable lasers as sources of UV radiation. It was shown that UV irradiation with a laser is more efficient than that with xenon lamp. It was established that the greatest number of dimers were formed by irradiating the H4Bip solution by radiation with a wavelength in the range 308-312 nm. The data obtained are discussed in the context of UV-B narrowband vitiligo phototherapy.

Keywords:
tetrahydrobiopterin, UV irradiation, autoxidation of tetrahydrobiopterin, photooxidation of tetrahydrobiopterin, azacyclobutane dimers, vitiligo phototherapy
Text
Text (PDF): Read Download
References

1. Kaufman S. The structure of the phenylalanine-hydroxylation cofactor. Proc. Natl Acad. Sci. USA, 1963, vol. 50, p. 1085-1093.

2. Davis M.D., Kaufman S., Milstein S. The auto-oxidation of tetrahydrobiopterin. Eur. J. Biochem., 1988, vol. 173, pp. 345-351.

3. Schallreuter K.U., Wood J.M., Pittelkow M.R., Gutlich M., Lemke K.R., Rödl W., Swanson N.N., Hitzemann K., Ziegler I. Regulation of melanin biosynthesis in the human epidermis by tetrahydrobiopterin. Science, 1994, vol. 263, pp. 1444-1446.

4. Schallreuter K.U., Moore J., Wood J.M., Beazley W.D., Peters E.M.J., Marles L.K., Behrens-Williams S.C., Dummer R., Blau N., Thöny B. Epidermal H2O2 accumulation alters tetrahydrobiopterin (6BH4) recycling in vitiligo: identification of a general mechanism in regulation of all 6BH4-dependent processes? J. Invest. Dermatol., 2001, vol. 116, pp. 167-174.

5. Schallreuter K. U. in book Autoimmune Diseases of the Skin: Pathogenesis, Diagnosis, Management. Second edition. Vitiligo, New-York: Springer Wein, ed. M. Hertl, ch. 13, 2005, pp. 367-384.

6. Schallreuter K. U. in book Systems Biology of Free Radicals and Antioxidants. Berlin Heidelberg: Springer-Verlag, ed. I. Laher, 2014, pp. 3697-3736.

7. Wood J. M., Chavan B., Hafeez I., Schallreuter K. U., Regulation of tyrosinase by tetrahydropteridines and H2O2. Biochem. Biophys. Res. Commun., 2004, vol. 325, pp. 1412-1417.

8. Nishikimi M. The generation of superoxide anion in the reaction of tetrahydropteridines with molecular oxygen. Arch. Biochem.Biophys., 1975, vol. 166, pp. 273-279.

9. Kirsch M., Korth H-G., Stenert V., Sustmann R., de Groot H. The autoxidation of tetrahydrobiopterin revisited. J. Biol. Chem., 2003, vol. 278, pp. 24481-24490.

10. Blair J. A., Pearson A. J. Kinetics and mechanism of the autoxidation of the 2-amino-4-hydroxy-5,6,7,8-tetrahydropteridines. J. Chem. Soc. Perkin. Trans,. 2, 1974, vol. 2, pp. 80-88.

11. Buglak A. A., Telegina T. A., Lyudnikova T. A., Vechtomova Y. L., Kritsky M. S. Photooxidation of tetrahydrobiopterin under UV-irradiation: posible pathways and mechanisms. Photochem. Photobiol., 2014, vol. 90, pp. 1017-1026.

12. Telegina T.A., Lyudnikova T.A., Buglak A.A., Vechtomova Y.L., Biryukov M. V., Demin V.V., Kritsky M.S. Transformation of 6-tetrahydrobiopterin in aqueous solutions under UV-irradiation. J. Photochem. Photobiol. A: Chem., 2018, vol. 354,pp. 155-162.

13. Buglak A. A., Telegina T. A., Kritsky M. S. A quantitative structure-property relationship (QSPR) study of singlet oxygen generation by pteridines. Photochem. Photobiol. Sci., 2016, vol. 15, pp. 801-811.

14. Vignoni M., Cabrerizo F. M., Lorente C., Claparols C., Oliveros E., Thomas A. H. Photochemistry of dihydrobiopterin in aqueous solution. Org. Biomol. Chem., 2010, vol. 8, pp. 800-810.

15. Vignoni M., Lorente C., Cabrerizo F. M., Erra-Balsells R., Oliveros E.,. Thomas A. H. Characterization and reactivity of photodimers of dihydroneopterin and dihydrobiopterin. Photochem. Photobiol. Sci., 2012, vol. 11, pp. 979-987.

16. Nizamutdinov A.S., Semashko V.V., Naumov A.K., Korableva S.L., Marisov M.A., Efimov V.N., Nurtdinova L.A. Characterization of Ce3+ and Yb3+ doped LiF-LuF3-YF3 solid solutions as new UV active media. Proc. SPIE,, 2011, vol. 7994, p. 79940H.

17. Nurtdinova L.A., Korableva S.L. Enhanced efficiency ultraviolet LiYXLu1-XF4:RE3+ (RE = Ce,Yb) laser. Las. Phys. Lett., 2014, vol. 11, p. 125807.

18. Rokos H., Beazley W. D., Schallreuter K. U. Oxidative stress in vitiligo: photo-oxidation of pterins produces H2O2 and pterin-6-carboxylic acid. Biochem. Biophys. Res. Commun., 2002, vol. 292, pp. 805-811.

19. Jain A., Mal J., Mehndiratta V., Chander R., Patra S. K. Study of oxidative stress in vitiligo. Indian J. Clin. Biochem., 2011, vol. 26, pp. 78-81.

20. Shimizu S., Shiota K., Yamamoto S., Miyasaka Y., Ishii M., Watabe T., Nishida M., Mori Y., Yamamoto T., Kiuchi Y. Hydrogen peroxide stimulates tetrahydrobiopterin synthesis through the induction of GTP-cyclohydrolase I and increases nitric oxide synthase activity in vascular endothelial cells. Free Radic. Biol. Med., 2003, vol. 34, pp. 1343-1352.


Login or Create
* Forgot password?