MODIFICATION OF THE INCUBATION MEDIUM OXIDATIVE ACTIVITY WITH ELECTROCHEMICALLY REDUCED WATER
Abstract and keywords
Abstract (English):
It has been shown that Dulbecco’s incubation medium prepared with electrochemically reduced water compensates for oxidative stress induced by hydrogen peroxide addition (H2O2, 0.2 mM) to the incubation medium. The incubation medium modified in this way does not affect the H2O2 induced apoptosis in an early mouse embryo. The embryonic cell in the experimental model of apoptosis shows the presence of characteristic morphological changes and decreased cell volume. These apoptosis-related changes were detected using laser-scanning microtomography.

Keywords:
electrochemically reduced water, redox potential, early mouse embryo, apoptosis, hydrogen peroxide, quantitative laser microtomography
Text
Text (PDF): Read Download
References

1. Shirahata S., Hamasaki T., Teruya K. Advanced research on the health benefit of reduced water. Trends in Food Science & Technology, 2012, vol. 23, pp. 124-131.

2. Henry M., Chambron J. Physico-chemical, biological and therapeutic characteristics of electrolyzed reduced alkaline water (ERAW). Water, 2013, vol. 5, pp. 2094-2115.

3. Bakhir V.M., Pogorelov A.G. Universal Electrochemical Technology for Environmental Protection. Int. J Pharm. Res. & Allied Sci., 2018, vol. 7, pp. 41-57.

4. Koseki M., Tanaka Y., Noguchi H., Nishikawa T. Effect of pH on the taste of alkaline electrolyzed water. J. Food Sci., 2007, vol. 72, pp. 298-302.

5. Tashiro H., Kitahora T., Fujiyama Y., Banba T. Clininical evaluation of alkali-ionized water for chronic diarrhea-placebo-controlled double blind study. Dig. Absorpt., 2000, vol. 23, pp. 52-56.

6. Osada K., Li Y.-P., Hamasaki T., Abe M., Nakamichi N., Teruya K. Anti-diabetes effects of Hita Tenryosui water, a natural reduced water. Animal cell technology: Basic & applied aspects, Dordrecht: Springer, 2010, vol. 15, pp. 307-313.

7. Shirahata S., Murakami E., Kusumoto K.-I., Yamashita M., Oda M., Teruya K. Telomere shortening in cancer cells by electrolyzed-reduced water. Animal cell technology: Challenges for the 21st century, Dordrecht: Kluwer Academic Publishers, 1999, pp. 355-359.

8. Kashiwagi T., Hamasaki T., Kabayama S., Takaki M., Teruya K., Katakura Y. Suppression of oxidative stress-induced apoptosis of neuronal cells by electrolyzed reduced water. Animal cell technology meets genomics, Dordrecht: Springer, 2005, pp. 257-259.

9. Abe M., Sato S., Toh K., Hamasaki T., Nakamichi N., Teruya K. Suppressive effect of ERW on lipid peroxidaton and plasma triglyceride level. Animal cell technology: Basic & applied aspects, Dordrecht: Springer, 2010, vol. 16, pp. 315-321.

10. Shirahata S., Kabayama S., Nakano M., Miura T., Kusumoto K., Gotoh M., Hayashi H., Otsubo K., Morisawa S., Katakura Y. Electrolyzed-reduced water scavenges active oxygen species and protects DNA from oxidative damage. Biochemical and Biophysical Research Communications, 1997, vol. 234, pp. 269-274.

11. Ignacio R.M.C., Joo K-B., Lee K-J. Clinical effect and mechanism of alkaline reduced water. J. Food and Drug Analysis, 2012, vol. 20, suppl. 1, pp. 394-397.

12. Liu L., Keefe D.L. Cytoplasm mediates both development and oxidation-induced apoptotic cell death in mouse zygotes. Biol. Reprod., 2000, vol. 62, pp. 1828-1834.

13. Trimarchi J.R., Lin L., Smith P.J. S., Keefe D.L. Apoptosis recruits two-pore domain potassium channels used for homeostatic volume regulation. Am. J. Physiol., 2002, vol. 282, pp. C588-C594.

14. Biggers J.D. Reflections on the culture of the preimplantation embryo. Int. J. Dev. Biol., 1998, vol. 42, pp. 879-884.

15. Pogorelov A.G., Katkov I.I., Pogorelova V.N. Influence of exposure to vitrification solutions on 2-cell mouse embryos: I. Intracellular potassium and sodium content. CryoLetters, 2007, vol. 28, pp. 403-408.

16. Pogorelova M.A., Golichenkov V.A., Pogorelova V.N., Kornienko E., Panait A.I., Pogorelov A.G. Klet. Tekhnol. Biol. Med., 2011, no. 3, pp. 155- 163.

17. Pogorelov A.G., Pogorelova V.N. Quantitative tomography of early mouse embryos: laser scanning microscopy and 3D reconstruction. J. Microscopy, 2008, vol. 232, pp. 36-43.

18. Pogorelov A. G., Pogorelova V. N. Dynamics of cell volume in early mouse embryos subjected to hypotonic shock. Biophysics, 2009, vol. 54, pp. 336-339.

19. Liu L., Trimarchi J.R., Keefe D.L. Thiol oxidation-induced embryonic cell death in mice is prevented by the antioxidant dithiothreitol. Biol. Reprod., 1999, vol. 61, pp. 1162-1169.

20. Pogorelov A.G., Allachverdov B.L., Burovina I.V., Mazay G.G., Pogorelova V.N. Study of potassium deficiency in cardiac muscle: cryotechniques and X-ray microanalysis. J. Microscopy, 1991, vol. 12, pp. 24-38.

21. Pogorelov A.G., Katkov I.I., Smolyaninova E.I., Goldshtein D.V. Changes in intracellular potassium and sodium content of 2-cell mouse embryos induced by exposition to vitrification concentrations of ethylene glycol. CryoLetters, 2006, vol. 27, pp. 87-98.

22. Pogorelova M. A., Yashin V. A., Pogorelov A. G., Golichenkov V. A. Quantitative tomography of mouse early embryo. Dokl. Akad. Nauk, 2008, vol. 418, pp. 71-75.

23. Pogorelova M.A., Goldstein D.V., Pogorelov A.G., Golichenkov V.A. Quantitation of cellular volume of early mouse embryo subjected to anisotonic conditions. Klet. Tekhnol. Biol. Med., 2009, no. 3, pp. 169-172.

24. Pogorelova M.A., Golichenkov V.A., Pogorelov A.G. Differential axial contrast of optical sections: laser microtomography and quantitative 3D reconstruction. Optics and Spectroscopy, 2014, vol. 116, pp. 488-493.

25. Pogorelova M.A., Panait A.I., Pogorelov A.G. Laser-scanning microscopy as applied to mouse early embryos: cytometry and analysis of cell morphology. Biophysics, 2016, vol. 61, pp. 445-452.

26. Littler D.R., Assaad N.N., Harrop S.J., Brown L.J., Pankhurst G.J., Luciani P., Aguilar M.-I., Mazzanti M., Berryman M.A., Breit S.N., Curmi P.M. G. Crystal structure of the soluble form of the redox-regulated chloride ion channel protein CLIC4. FEBS Journal, 2005, vol. 272, pp. 4996-5007.

27. Maeno E., Ishizaki Y., Kanaseki T., Hazama A., Okada Y. Normotonic cell shrinkage because of disordered volume regulation is an early prerequisite to apoptosis. Proc Nat Acad Sci USA, 2000, vol. 97, pp. 9487-9492.

28. Shimizu T., Numata T., Okada Y. A role of reactive oxygen species in apoptotic activation of volume-sensitive Cl_ channel. Proc Nat Acad Sci USA, 2004, vol. 101, pp. 6770-6777.

29. Cohen G.M., Sun X.-M., Snowden R.T., Dinsdale D., Skilleter D.N. Key morphological features of apoptosis may occur in the absence of internucleosomal DNA fragmentation. Biochem. J., 1992, vol. 286, pp. 331-334.

30. Hur C.-G., Choe C., Kim G.-T., Cho S.-K., Park J.-Y., Hong S.-G., Han J., Kang D. Expression and localization of two-pore domain KC channels in bovine germ cells. Reproduction, 2009, vol. 137, pp. 237-244.

31. Hur C.-G., Kim E.-J., Cho S.-K., Cho Y.-W., Yoon S.-Y., Tak H.-M., Kim C.-W., Choe C., Han J., Kang D. K+ efflux through two-pore domain K+ channels is required for mouse embryonic development. Reproduction, 2012, vol. 143, pp. 625-636.

32. Okada Y. Volume expansion-sensing outward-rectifier Cl-channel: fresh start to the molecular identity and volume sensor. Am. J. Physiol., 1997, vol. 273, pp. C755-C789.


Login or Create
* Forgot password?