The method of tritium planigraphy has applied to solving a wide range of problems of modern biophycis, structural chemistry, molecular and physico-chemical biology. It is based on a non-selective substitution of hydrogen in hydrocarbon fragments of molecules for its radioactive isotope-tritium. The data obtained by this method, in combination with our imitation algorithm of tritium bombardment, was successfully used to obtain information on the spatial organization of proteins and their complexes. Details of the structure of the potexviruses are currently unknown. The example of potato virus X shows a technique for determining the orientation of subunits in the virus relative to the axis of the helix and their placement under a known subunit structure, taking into account spatial limitations and experimental data of tritium planigraphy. This allows us to detail the quaternary structure of the virion and significantly reduce the choice of subunits possible orientations in the virion.
spatial structure of potato virus X, tritium planigraphy
1. Kendall A., McDonald M., Bian W. [et al.] Structure of Flexible Filamentous Plant Viruses. Virology, 2008, vol.82, pp. 9546-9554.
2. Parker L., Kendall A., Stabbs G., Surface Features of Potato Virus X from Fiber Diffraction. Virology, 2002, vol. 300, Issue 2, pp. 291-295.
3. Baratova L.A., Grebenshchikov. N. I., Dobrov E. N., Gedrovich A. V., Kashirin I. A., Shishkov A. V., Efimov A. V., Järvekülg L., Radavsky Y. L., Saarma M. 1992. The organization of potato virus X coat proteins in virus particles studied by tritium planigraphy and model building. Virology, vol. 188, iss. 1, pp. 175-180.
4. Agirrezabala X., Méndez-López E., Lasso G., Amelia Sánchez-Pina M.A., Aranda M., Valle M. The near-atomic cryoEM structure of a flexible filamentous plant virus shows homology of its coat protein with nucleoproteins of animal viruses. eLife, 2015, vol. 4, p. e11795, DOI:https://doi.org/10.7554/eLife.11795L.
5. DiMaio F., Song Y., Li X., Brunner M.J., Xu C. Atomic-accuracy models from 4.5-Å cryo-electron microscopy data with density-guided iterative local refinement. Nature Methods, 2015, vol. 12, pp. 361-365.
6. Yang S., Wang T., Bohon J., Gagne M.E., Bolduc M., Leclerc D, Li H. Crystal Structure of the Coat Protein of the Flexible Filamentous Papaya Mosaic Virus. J. Mol. Biol., 2012, vol. 422, iss. 2, pp. 263-273.
7. Baratova L.A., Bogacheva E.N., Gol'danskiy V.I., Kolb V.A., Spirin A.S., Shishkov A.V. Tritievaya planigrafiya biologicheskih makromolekul. M.: Nauka, 1999, 175 s. [Baratova L.A. Bogacheva E.N., Goldanskiy V.I., Kolb V.A., Spirin A.S., Shishkov A.V. Tritium planigraphy biological macromolecules. Moscow: Nauka, 1999, 175 p. (In Russ.)]
8. Shishkov A.V., Bogacheva E.N. Tritium planigraphy of biological macromolecules. Methods in Protein Structure and Stability Analysis: Conformational Stability, Size, Shape and Surface of Protein Molecules, N.-Y.: Nova Science Publishers, 2007, pp. 317-353.
9. Bogacheva E.N., Dolgov A.A., Chulichkov A.L., Shishkov A.V. Primenenie tritievoy planigrafii v fundamental'nyh issledovaniyah v oblasti biofiziki. Cb. dokl. XII Mezhdunar. nauch. konf. «Fiziko-himicheskie processy pri selekcii atomov i molekul i v lazernyh, plazmennyh i nanotehnologiyah», 31.03-04.04.2008, g. Zvenigorod (Ershovo), c. 368. [Bogacheva E.N., Dolgov A.A., Chulichkov A.L., Shishkov A.V. In digest of XII International Scientific Conf. "Physico-chemical processes in the selection of atoms and molecules in laser, plasma and nanotechnologies", 31.03-04.04.2008, Zvenigorod (Ershovo), p. 368. (In Russ.)]
10. Lukashina E., Ksenofontov A., Fedorova N. et al. Analysis of the role of the coat protein n-terminal segment in potato virus x virion stability and functional activity. Molecular Plant Pathology, 2012, vol. 13, pp. 38-45.
11. Shishkov A.V., Goldanskii V.I., Baratova L.A., Fedorova N.V., Ksenofontov A.L., Zhirnov O.P., Galkin A.V. The in situ spatial arrangement of the influenza A virus matrix protein M1 assessed by tritium bombardment. Proc. Nat. Acad. Sci. USA, 1999, vol. 96, no. 14, pp. 7827-7830.
12. Semenyuk P.I., Karpova O.V., Ksenofontov A.L. [i dr.] Strukturnye osobennosti belkov obolochki poteksvirusov, vyyavlyaemye opticheskimi metodami. Biohimiya, 2016, t. 82, vyp. 12, s. 1836-1846. [Semenyuk P.I., Karpova O.V., Ksenofontov A.L. [et al.] Structural features of the plexvirus membrane proteins, detected by optical methods. Biochemistry, 2016, vol. 86, iss. 12, pp. 1836-1846. (In Russ.)]
13. Bogacheva E.N., Bogachev A.N., Dmitriev I.B, Dolgov A.A., Chulichkov A.L., Shishkov A.V., Baratova L.A. Postroenie modeley prostranstvennoy struktury belkov po dannym tritievoy planigrafii. Biofizika, 2011, t. 56, № 6, s. 1024-1037. [Bogacheva E.N., Bogacheva A.N., Dmitriev I.B., Dolgov A.A., Chulichkov A.L., Shishkov A.V., Baratova L.A. Construction of models of the spatial structure of proteins according to tritium planigraphy. Biophysics, 2011, vol. 56, no. 6, pp. 1024-1037 (In Russ.)]