In this paper, we propose a possible mechanism for the rotation of the molecular rotor by the example of FOF1 Na+-ATP-synthase Propionigenium modestum , the mechanism of the torque of bacterial flagella, and the work of the ion pump. It is shown that the mechanism of rotation of molecular rotors, the transfer of ions against the concentration gradient, is the same for both proton and sodium bioenergetics.
mechanism of molecular motors, the rotational torque of the ATP-synthase- rotor, the torque of the basal bodies of bacterial flagella, the mechanism of active ion transport
1. Skulachev V.P. Zakony bioenergetiki. COZh, MGU im. Lomonosova, 1997, t. 01, s. 9-14. [Skulachov V.P. Bioenergetics laws. SOJ, MSU of Lomonosov, 1997, vol. 01, pp. 9-14. (In Russ.)]
2. Romanovskiy Yu.M., Tihonov A.N. Molekulyarnye preobrazovateli energii zhivoy kletki. Protonnaya ATF-aza - vraschayuschiysya molekulyarnyy motor. UFN, 2010, t. 180, s. 931-956. [Romanovskiy Yu.M., Tikhonov A.N. Molecular energy converters of living cells. Proton ATP-ase - a rotating molecular motor. UFN, 2010, vol. 180, pp. 931-956. (In Russ.)]
3. Kinosita K., Yasuda J.R., Noji H., Adachi K. A rotary molecular motor that can work at near 100% efficiency. Philos. Trans R. Soc. Lond. B. Biol. Sci., 2000, vol. 355(1396), pp. 473-489.
4. Castillo J.P., Rui H., Basilio D., Das A., Roux B., Latorre R., Bezanilla F., Holmgren M. Mechanism of potassium ion uptake by the Na(+)/K(+)-ATPase. Nat Commun., 2015, vol. 6, p. 7622.
5. Skulachev V.P. Bioenergetika. Membrannye preobrazovateli energii. M.: Vyssh. shk., 1989, 270 s. [Skulachev V.P. Bioenergetics. Membrane energy convertors. Moscow: Visshaya shkola, 1989, 270 p. (In Russ.)]
6. Kaim G. The Na+-translocating F1F0 ATP synthase of Propionigenium modestum: mechanochemical insights into the F0 motor that drives ATP synthesis. Biochimica et Biphisica Acta (BBA), 2001, vol. 1505, iss. 1, pp. 94-107.
7. Hakulinen J.K., Klyszeiko A.L., Hoffmann J., Eckardt-Strelau L. [et al.] Structural study on the architecture of the bacterial ATP synthase F motor. Proc. Natl. Acad. Sci. USA, 2012, vol. 109(30), pp. 357-359.
8. Al'tshuler S.A., Kozyrev B.M. Elektronnyy paramagnitnyy rezonans. M.: Nauka, 1961, 672 s. [Altshuler S.A., Kozyrev B.M. Electron paramagnetic resonance. Moscow: Nauka, 1961, 672 p. (In Russ.)]; EDN: https://elibrary.ru/PNXUNP
9. Slikter Ch. Osnovy teorii magnitnogo rezonansa. M.: Mir, 1981, 448 s. [Slikter C. Bases of magnetic resonance theory. Moscow: Mir, 1989, 448 p. (In Russ.)]
10. Shestakova A.N., Butorina A.V., Osadchiy A.E. Magnitoencefalografiya - noveyshiy metod funkcional'nogo kartirovaniya mozga cheloveka. Zh. eksperimental'noy psihologii, 2012, t. 5, № 2, s. 119-134. [Shestakova A.N., Butorina A.V., Osadchiy A.E. Magnetoencephalography - the newest method of functional mapping of the human brain. J. of experimental psychology, 2012, vol. 5, no. 2, pp. 119-134. (In Russ.)
11. Vvedenskiy V.L., Ozhogin V.I. Sverhchuvstvitel'naya magnitometriya. M.: Nauka, 1986, 199 s. [Vvedenskiy V.L., Ojogin V.I. Supersensitive magnetometry. Moscow: Nauka, 1986, 199 p. (In Russ.)]
12. Parsell E. Elektrichestvo i magnetizm. M.: Nauka, 1965, 444 c. [Parcel E. Electricity and magnetism. Moscow: Nauka, 1965, 444 p. (In Russ.)]
13. Hodjkin A.L., Huxly F.A. A quantitative description of membran current and its application to conduction and exitation in nerve. J. Physiolojy, 1974, vol. 117, no. 4, pp. 500-544.
14. Besanilla F., Armstrong C.M. Inactivation of the sodium channel. Sodium current experiments. J. Gen Physiol., 1977, vol. 70(5), pp. 549-66.
15. Davydov A.S. Biologiya i kvantovaya mehanika, M.: Nauka, 1979, 296 s. [Davydov A.S. Biology and quantum mechanics. Moscow: Nauka, 1979, 296 p. (In Russ.)]
16. Matveev A.N. Elektrichestvo i magnetizm. Lan', 2010, 464 c. [Matveyev A.N. Electricity and magnetism. Lan’, 2010, 464 p.]
17. Landau L.D., Lifshic E.M. Elektrodinamika sploshnyh sred. M.: Nauka, 1982, 621 c. [Landau L.D., Lifshits E.M. Electrodynamics of Continuous Media. Moscow: Nauka, 1982, 621 p. (In Russ.)]
18. Malvankar N.S., Yalcin S.E., Tuominen M.T., Lovlley D.R. Visualization of charge propagation along individual pili proteins using ambient electrostaticforcemicroscopy. Nature Nanotechnology Letters, 2014, vol. 9, pp. 1012-1017.
19. Waleed S.M., Jamal D.M., Starikov E.B., Cuniberti G. Electrical conductance in biological molecules. Adv.Funct. Mater, 2010, pp. 1865-1883.
20. Vasil'eva-Vashakmadze N.S. O vnutrenney vzaimosvyazi mezhdu allostericheskim, mezomernym i induktivnym effektami v α-spiral'nyh belkovyh kompleksah. V S'ezd Biofizikov Rossii. Materialy, 2015, t. 1, № 73, s. 153-156. [Vasilieva-Vashkamadze N.S. On the internal relationship between allosteric, mesomeric and inductive effects in α-helical protein complexes. V Congress of Biophysicists of Russia. Materials, 2015, vol. 1, no. 73, pp. 153-156. (In Russ.)]
21. Sivuhin D.V. Obschiy kurs fiziki. III t. M.: Nauka, 1977, 704 s. [Sivuhin D.V. General course of physics. Vol. III. Moscow: Science, 1977, 704 p. (In Rus,,)]
22. Vihardpol' R. Uchenie ob elektrichestve. M.: Fizmatgiz,, 1962, 316 s. [Vihardpol R. The study of electricity. Moscow: Physmathgis., 1962, 316 p. (In Russ.)]
23. Skulachev V.P. Elektrodvigatel' bakteriy. SOZh, 1996, t. 9, s 2-7. [Skulachov V.P. Bacterial electroengine. SOJ, 1996, vol. 9, pp. 2-7. [In Russ.])
24. Renui L. Stepwise formation of the bacterial flagellar system. PNAS, 2017, vol. 104, no. 17, pp. 7116-7121,
25. Omoto C.K., Gibbsons I.R., Kamiya D.R. Rotation of the Central Pair Microtubules in Eucaryotic Flagella. Molec. Biology of the Cell., 1999, vol. 10, pp. 14-44.
26. Romanovskiy Yu.M., Tihonov A.N. Molekulyarnye preobrazovateli energii zhivoy kletki. Protonnaya ATF-aza - vraschayuschiysya molekulyarnyy motor. UFN, 2010, t. 180, s. 931-956. [Romanovskiy Yu. M., Tikhonov A.N. Molecular energy converters of living cells. Proton ATP-ase is a rotating molecular motor. UFN, 2010, vol. 180, pp. 931-956. (In Russ.)]
27. Jensen R.B., Wang C.C., Shapiro L. Dynamic localization of proteins and due during a bacterial cell cycle. Nature Reviews Molecular Cell Biology, 2002, vol. 3, pp. 167-176.
28. Erdei-Gruz T.N. Yavleniya perenosa v vodnyh rasvorah, M.: Mir, 1976, 597 s. [Erdei-Hruz T.H. Phenomena of transition in aquatic solution. Moscow: Mir, 1976, 597 p. (In Russ.)]
29. Prohorov A.M. Enciklopedicheskiy slovar' po fizike. M.: Sov. enciklopediya, 1983, 944 s. [Prokhorov A.M. Encyclopedic vocabulary on physics. Moscow: Soviet encyclopedy, 1983, 944 p. (In Russ.)]
30. Kittel' Ch. Fizika tverdogo tela. M.: Nauka, 1967, 615 s. [Kittle C. Physics of solid state. Moscow: Nauka, 1967, 615 p. (In Russ.)]
31. Izmailov P.A. Elektrohimiya rastvorov. M.: Him., 1976, 468 s. [IzmailovvP.A. Electrochemistry of solution. Moscow: Chem., 1976, 468 p. (In Russ.)]
32. Kratkiy spravochnik fiziko- himicheskih velichin. L.: Himiya, red. K.P. Mischenko, A.A. Ravdel', 1987, 200 s. [A brief reference book of physical and chemical quantities. Leningrad: Chemistry, ed. K.P. Mishchenko, A.A. Ravdel, 1987, 200 p. (In Russ.)]
33. Zheligovskaya N.N., Chernyaev I.I. Himiya koordinacionnyh soedineniy. M.: Vyssh. shk., 1966, 387 s. [Jeligovskaya N.N., Chernyaev I.I. Chemistry of coordinating substances. Moscow: Vysshaya shkola, 1966, 387 p. (In Russ.)]