EVALUATION OF ENZYMATIC ACTIVITY OF LACCASE FROM TRAMETES VERSICOLOR BY QUANTUM-CHEMICAL METHODS
Abstract and keywords
Abstract (English):
Geometric, electronic and thermochemical characteristics of molecules and cation-radicals of substituted mono-, di-, triatomic phenols have been calculated within the framework of the density functional theory (DFT) using the B3LYP hybrid functional. The kinetic parameters of the laccase oxidation reaction of polyatomic phenols and ascorbic acid in citrate buffer pH = 4,6, 308 K. The activity of laccase from Trametes Versicolor in the oxidation reaction of phenols is compared with the values of the ionization potential of the studied substrates.

Keywords:
laccase, phenols, ionization potential, spectrophotometry, quantum-chemical calculations
Text
Publication text (PDF): Read Download
References

1. Morozova O.V. [i dr.]. Lakkaza-mediatornye sistemy i ih ispol'zovanie: obzor. Prikladnaya biohimiya i mikrobiologiya, 2007, t. 43, s. 583-597. [Morozova O.V. Lakkaza-mediator systems and their use: a review. Prikladnaya biochimia i mikrobiologia, 2007, vol. 43, pp. 583-597. (In Russ.)]

2. Rodríguez-Delgadoa Gibrán M.M., José S.A.-N., Rodríguez-Delgadob M. [et al.] Laccase-based biosensors for detection of phenolic compounds Trends in Analytical Chemistry, 2015, vol. 74, pp. 21-45.

3. Kulikova N.A., Klyayn O.I. [i dr.] Ispol'zovanie bazidial'nyh gribov v tehnologiyah pererabotki i utilizacii tehnogennyh othodov: fundamental'nye i prikladnye aspekty. Prikladnaya biohimiya i mikrobiologiya, 2011, t. 47, s. 619-634. [Kulikova N.A., Klein O.I. [et al.]. Use of basidiomycetes in technologies for processing and utilization of man-caused waste: fundamental and applied aspects. Applied Biochemistry and Microbiology, 2011, vol. 47, pp. 619-634. (In Russ.)]

4. Sirjoosingh A., Hammes-Schiffer S. Sirjoosingh A. Proton-coupled electron transfer versus hydrogen atom transfer: generation of charge-localized diabatic states. J. Phys. Chem. A, 2011, vol. 115, pp. 2367-2377, DOI:https://doi.org/10.1021/jp111210c.

5. Hammes-Schiffer S. Proton-coupled electron transfer: Moving together and charging forward. J. Am Chem. Soc., 2015, pp. 8860-8871, DOI:https://doi.org/10.1021/jacs.5b04087.

6. Burke K., Werschnik J., Gross E.K.U. Time-dependent density functional theory: Past, present, and future. J. Chem. Phys., 2005, vol. 123, pp. 2206-2218.

7. Becke A.D. Densityfunctional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 1993, vol. 98, pp. 5648-5652.

8. Lee C., Yang W., Parr R. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B, 1998, vol. 37, pp. 785-789.

9. Tomasi J., Mennucci B., Cammi R. Quantum Mechanical Continuum Solvation Models. Chem. Rev., 2005, vol. 105(8), pp. 2999-3094.

10. Young D. Computational Chemistry. Wiley-Interscience, 2001, 334 p.

11. Schmidt M.W. General Atomic and Molecular Electronic Structure System. J. Comput. Chem., 1993, vol. 14, pp. 1347-1363, DOIhttps://doi.org/10.1002/jcc.540141112.


Login or Create
* Forgot password?