The presence of gas bubbles in the bottom of shallow marine and freshwater reservoirs significantly reduces the speed of sound. The amount of gas in the bottom depends on microbiological activity, and therefore pollution level is an indicator of the ecological balance. It is proposed to control the level of bottom contamination by measuring sound reflection coefficient or measuring the input bottom impedance. The frequency-angular reflection coefficient dependences and frequency dependences of the input bottom impedance are calculated. It is shown that the principal point of the results correct interpretation is the inclusion of intergranular friction and sound velocity dispersion in marine sediments.
marine sediments, phase-velocity dispersion, intergranular friction, gas-saturated sediments, rate of decay, reflection coefficient, bottom impedance
1. Katsnelson B., Petnikov V., Lynch J. Fundamentals of shallow water acoustics. New York: Springer, 2012.
2. Jackson D.R., Richardson M.D. High-Frequency Seafloor Acoustics. New York: Springer, 2007.
3. Schock S.G. A Method for estimating the physical and acoustic properties of the sea bed using chirp sonar data. IEEE J. of Ocean. Eng., 2004, vol. 29, no. 4, pp. 1200-1217.
4. Komissarova N.N., Furduev A.V. Akusticheskiy metod izmereniya gazosoderzhaniya v donnyh osadkah. Akust. zhurn., 2004, t. 50, № 5, s. 666 -670. [Komissarova N.N., Furduev A.V. Acoustic method of measuring the gas content in bottom sediments. Acust. journal, 2004, vol. 50, no. 5, pp. 666-670. (In Russ.)]
5. Chotiros N. P., Lyons A. P., Osler J., Pace N. G. Normal incidence reflection loss from a sandy sediment. J. Acoust. Soc. Am., 2002, vol. 112, no. 5, pp. 1831-1841.
6. Lisyutin V.A., Lastovenko O.R., Yaroshenko A.A., Sravnenie dispersionno-dissipativnyh harakteristik mod v volnovode Pekerisa v sluchae zhidkogo i poristogo dna. Doklady IXX shkoly-seminara im. akad. L.M. Brehovskih. M: GEOS, 2018, s. 120-124. [Lisyutin V.A., Lastovenko O.R., Yaroshenko A.A. Dispersion-dissipative characteristics comparison of modes in the Pekeris waveguide in the case of a liquid and porous bottom. Reports of the IXX School Seminar. acad. L.M. Brekhovsky. M: GEOS, 2018, pp.120-124. (In Russ.)]
7. Lisyutin V.A. Lastovenko O.R. Yaroshenko A.A. Reshenie obobschennogo uravneniya Nav'e-Stoksa dlya mikroneodnorodnoy dvuhfaznoy sredy. Prikladnye zadachi matematiki: materialy XHV mezhdunar. nauchn.-tehn. konf. Sevastopol', 18-22 sentyabrya 2017, g. Sevastop. gos. un-t., Sevastopol', 2017, s. 222. [Lisyutin V.A., Lastovenko O.R., Yaroshenko A. A. Solution of the generalized Navier-Stokes equation for a micro-inhomogeneous two-phase medium. Applied Mathematics Problems: Materials XXV International. scientific-techn. Conf. Sevastopol, September 18-22, 2017. Sevastopol state university. Sevastopol, 2017, p. 222. (In Russ.)]
8. Lisyutin V.A. O akusticheskih harakteristikah morskih osadkov. Podklyuchenie techeniy k GS teorii mezhgranulyarnogo treniya. Doklady IXX shkoly-seminara im. akad. L.M. Brehovskih. M: GEOS., 2018, s. 156-160. [Lisyutin V.A. On the acoustic characteristics of marine sediments. Connection of flows to the GS theory of intergranular friction. Reports of IXX School-Seminar named after acad. L.M. Brekhovskih, M: GEOS. 2018, pp. 156-160. (In Russ.)]
9. Brehovskih L.M. Godin O.A. Akustika neodnorodnyh sred. V 2 t. T. 1. Osnovy teorii otrazheniya i rasprostraneniya zvuka, M.: Nauka, 2007, 442 s. [Brekhovskikh L.M., Godin O.A. Acoustics of inhomogeneous media. In 2 volumes. vol. 1. Fundamentals of the theory of sound reflection and propagation, Moscow: Nauka, 2007, 442 p. (In Russ.)]
10. Buckingham M.J. On pore-fluid viscosity and the wave properties of saturated granular materials including marine sediments. J. Acoust. Soc. Am., 2007, vol. 122, no. 3, pp. 1486-1501.