A biophysical model of the evolution of the biosphere is considered on the basis of ideas about self-organization in hierarchically conjugate active media. This systematic approach allows us to re-examine the ideas of the bifurcation development of the biosphere at all hierarchical levels of biological evolution. In the model, the driving force behind the evolution of the biosphere is the hierarchy of distributed active media composed of a mosaic of biocenoses. The active medium creates a frontal "pressure of natural selection". A passive filter of natural selection allows branches of evolution to escape to a stable trajectory of development and gain a foothold on it. Unlike the classical phylogenetic tree, which reflects the principle of the vertical evolution of the biosphere, in this approach the biosphere is a single organism evolving according to the laws determined by selection, gene transfer, convergence and divergence - the mechanisms of evolution. This three-dimensional network of direct and feedback links allows us to consider the evolving biosphere as a hierarchy of active media.
hierarchy of active media, autowaves, biosphere, evolution
1. Sidorova A.E., Tverdislov V.A. Samoorganizaciya v ierarhii aktivnyh sred kak dvizhuschaya sila evolyucii biosfery. VMU. Seriya 3. Fizika. Astronomiya, 2012, t. 68, № 2, s. 65-69. [Sidorova A.E., Tverdislov V.A. Self-Organization as the Driving Force for the Evolution of the Biosphere. Moscow University Physics Bulletin, 2012, vol. 68, no. 5, p. 405-410. (In Russ.)]
2. Tverdislov V.A., Sidorova A.E., Yakovenko L.V. Biofizicheskaya ekologiya. Monografiya. M.: URSS, 2012, 544 s. [Tverdislov V.A., Sidorova A.E., Yakovenko L.V. Biophysical ecology. Monograph. M.: URSS, 2012, 544 p. (In Russ.)]
3. Broadbent S.R., Hammerslae J.M. Percolation process. 1. Crystals and mazes. Proc. Cambridge Philos. Soc., 1953, vol. 53, pp. 629-641.
4. Sharov A.A. Genome increase as a clock for the origin and evolution of life. Biology Direct, 2006, vol. 1, p. 17.
5. Patthy L. Genome evolution and the evolution of exon shuffling - a review. Gene, 1999, vol. 238, no. 1, pp. 103-114.
6. Markov A.V., Anisimov V.A., Korotaev A.V. Vzaimosvyaz' razmera genoma i slozhnosti organizma v evolyucionnom ryadu ot prokariot k mlekopitayuschim. Paleontologicheskiy zhurnal, 2010, № 4, s. 3-14. [Markov A.V., Anisimov V.A., Korotaev A.V. The relationship between the size of the genome and the complexity of the organism in the evolutionary series from prokaryotes to mammals. Paleontological Journal, 2010, no. 4, pp. 3-14. (In Russ.)]
7. Kolchanov N.A., Anan'ko E.A., Kolpakov F.A. [i dr.] Gennye seti. Mol. biol., 2000, t. 34, c. 533-544. [Kolchanov N.A., Ananko E.A., Kolpakov F.A. Gene networks. Mol. Biol., 2000, vol. 34, pp. 533-544. (In Russ.)]
8. Mikkelsen T.S., Wakefield M.J., Aken B. [et al.] Genome of the marsupial Monodelphis domestica reveals innovation in noncoding sequences. Nature, 2007, vol. 447, no. 7141, pp. 167-177.
9. Miller W.J., McDonald J.F., Nouaud D., Anxolabe’hère D. Molecular domestication - more than a sporadic episode in evolution. Genetica, 1999, vol. 107, pp. 197-207.
10. Eigen M., Schuster P. The hypercycle. A principle of natural self organization. Part A: emergence of the hypercycle. Naturwiss, 1977, vol. 64, no. 11, pp. 541-565.
11. Per Buck. How nature works: the theory of self-organized criticality. Moscow: URSS: Librocom, 2013, 269 p.