EFFECTS OF CHRONIC IRRADIATION IN LOW DOSES ON ELECTROGENESIS AND PHOTOSYNTHETIC ACTIVITY OF PEA SEEDLINGS
Abstract and keywords
Abstract (English):
The study of the physiological processes of plants and their adaptation to stressors in a permanent high radiation background is significant due to the presence of radiation pollution associated with human activities. The aim of the work is to study the effect of chronic irradiation in a low dose on the electrogenesis and photosynthetic activity of pea seedlings. The object of research is 17-day-old seedlings of peas ( Pisum sativum L.). The source of ionizing radiation (IR) is a 90Sr-90Y system with an activity of 0.1 MBq. The total accumulated dose was about 12.7 mGy. In the work, measurements of the activity of photosynthesis, the parameters of electrical signals and the photosynthetic responses caused by them were performed. The stimulating effect of IR on the intensity of assimilation (A) and the maximum efficiency of photosynthesis (Fv/Fm) were found at constant values of the quantum yields of photosystems I and II (Y(I) and Y(II)). The amplitude of electrical signals, as well as the intensity of photosynthetic responses caused by them, showed a tendency to decrease.

Keywords:
ionizing radiation, low doses, regulation of photosynthesis, electrical signals
Text
Text (PDF): Read Download
References

1. Pozolotina V.N., Antonova E.V. Temporal variability of the quality of Taraxacum officinale seed progeny from the East-Ural radioactive trace: is there an interaction between low level radiation and weather conditions? Int. J. Radiat. Biol., 2016, DOI:https://doi.org/10.1080/09553002.2016.1254835.

2. Smith J.T., Willey N.J., Hancock J.T. Low dose ionizing radiation produces too few reactive oxygen species to directly affect antioxidant concentrations in cells. Biol. Lett., 2012, vol. 8, pp. 594-597.

3. Kudryasheva A.G. Istoriya nauki: radiobiologiya. Deystvie malyh doz ioniziruyuschego izlucheniya. Vestnik IB, 2009, № 2, c. 2-6. [Kudyasheva A.G. The history of science: Radiobiology. The action of low doses of ionizing radiation. Vestnik IB, 2009, no. 2, pp. 2-6. (In Russ.)]

4. Zaynullin V.G., Evseeva T.I. Ekologo-geneticheskie mehanizmy reakcii biologicheskih sistem (ot kletki do populyacii) na nizkointensivnye vozdeystviya. Vestnik IB, 2011, № 4-5, c. 29-33. [Zainullin V.G., Evseeva T.I. Ecological and genetic mechanisms of reaction of biological systems (from a cell up to a population) on low-intensive exposure. Vestnik IB, 2011, no. 4-5, pp. 29-33. (In Russ.)]

5. Burlakova E.B., Konradov A.A., Mal'ceva E.L. Deystvie sverhmalyh doz biologicheski aktivnyh veschestv i nizkointensivnyh fizicheskih faktorov. Himicheskaya fizika, 2003, tom 22, № 2, c. 21-40. [Burlakova E.B., Konradov A.A., Maltseva E.L. The action of ultra-small doses of biologically active substances and low-intensity physical factors. Khimicheskaya fizika, 2003, vol. 22, no. 2, pp. 21-40. (In Russ.)]

6. Petin V.G., Pronkevich M.D. Radiacionnyy gormezis pri deystvii malyh doz ioniziruyuschego izlucheniya: Uchebnoe posobie po kursu «Ekologicheskaya biofizika». Obninsk: IATE NIYaU MIFI, 2012, 73 s. [Petin V.G., Pronkevich M.D. Radiation hormesis under the action of small doses of ionizing radiation: A manual on the course "Environmental Biophysics". Obninsk: IATE MEPHI, 2012, 73 r. (In Russ.)]

7. Kuzin A.M. Strukturno-metabolicheskaya teoriya v radiobiologii. M.: Nauka, 1988, 284 s. [Kuzin A.M. The structural and metabolic theory in radiobiology. Moscow: Nauka, 1988, 284 p. (In Russ.)]

8. Kim J.H., Baek M.H., Chung B.Y., Wi S.G., Kim J.S. Alterations in the Photosynthetic Pigments and Antioxidant Machineries of Red Pepper (Capsicum annuum L.) Seedlings from Gamma-Irradiated Seeds. Journal of Plant Biology, 2004, vol. 47, no. 4. pp. 314-321.

9. Singh B., Ahuja S., Singhal R. K., Venu Babu P. Effect of gamma radiation on wheat plant growth due to impact on gas exchange characteristics and mineral nutrient uptake and utilization. J. Radioanal. Nucl. Chem., 2012, DOIhttps://doi.org/10.1007/s10967-012-2342-5.

10. Van Hoeck A., Horemans N., Nauts R., Van Hees M., Vandenhove H., Blust R. Lemna minor plants chronically exposed to ionising radiation: RNA-seq analysis indicates a dose rate dependent shift from acclimation to survival strategies. Plant Science, 2017, DOI:https://doi.org/10.1016/j.plantsci.2017.01.010.

11. Chandorkar K.R., Clark G.M. Physiological and morphological responses of Pinus strobus L. and Pinus sylvestris L. seedlings subjected to low-level continuous gamma irradiation at a radioactive waste disposal area. Environ. Exp. Bot., 1986, vol. 26, no. 3, pp. 259-270.

12. Vanhoudt N., Horemans N., Wannijn J., Nauts R., Hees M.V., Vandenhove H. Primary stress responses in Arabidopsis thaliana exposed to gamma radiation. J. Environ. Radioact., 2014, vol. 129, pp. 1-6.

13. Biermans G., Horemans N., Vanhoudt N., Vandenhove H., Saenen E., Hees M. V., Wannijn J., Vangronsveld J., Cuypers A. Biological effects of α-radiation exposure by 241Am in Arabidopsis thaliana seedlings are determined both by dose rate and 241Am distribution. J. Environ. Radioact., 2015, vol. 149, pp. 51-63.

14. Fromm J., Lautner S. Electrical signals and their physiological significance in plants. Plant Cell Environ, 2007, vol. 30, pp. 249-257.

15. Gallé A., Lautner S., Flexas J., Fromm J. Environmental stimuli and physiological responses: The current view on electrical signaling. Environ. Exp. Bot., 2015, vol. 114, pp.15-21.

16. Stahlberg R., Cleland R., Volkenburgh E. Slow wave potentials - a propagating electrical signal unique to higher plants. In: Baluska F, Mancuso S, Volkmann D (eds) Communication in plants. Neuronal aspects of plant life. Springer-Verlag. Berlin-Heidelberg, 2006, pp. 291-308.

17. Vodeneev V.A., Katicheva L.A., Sukhov V.S. Electrical Signals in Higher Plants: Mechanisms of Generation and Propagation. Biophysics, 2016, vol. 61, no. 3, pp. 505-512.

18. Sevriukova O., Kanapeckaite A., Lapeikaite I., Kisnieriene V., Ladygieneb R., Sakalauskasa V. Charophyte electrogenesis as a biomarker for assessing the risk from low-dose ionizing radiation to a single plant cell. J. Environ. Radioact., 2014, vol. 136, pp.10-15.

19. Maxwell K., Johnson G.N. Chlorophyll fluorescence - a practical guide. J. Exp. Bot., 2000, vol. 51, pp. 659-668.

20. Klughammer C., Schreiber U. Saturation pulse method for assessment of energy conversion in PS I. PAM Application Notes, 2008, vol. 1, pp. 11-14.


Login or Create
* Forgot password?