CHANGE IN THE LEVEL OF ROS IN HELA KYOTO CELLS AT DIFFERENT STAGES OF CISPLATIN-INDUCED CELL DEATH
Abstract and keywords
Abstract (English):
Cisplatin is a chemotherapeutic drug, successfully used in the treatment of a wide range of tumors. This drug can cause mitochondrial dysfunction and increased production of reactive oxygen spices (ROS), which leads to the damage of membrane, DNA and other important cell elements. The aim of the study was to investigate the changes in the level of ROS at different stages of cell death caused by cisplatin. We used the HeLa Kyoto cell line, the fluorescent dye DCFH-DA, the marker of apoptosis PE-Annexin V, and the vital dye 7-actinaminomycin D. Using flow cytometry, it was shown that after treatment most of viable cells are intensely stained with DCFH-DA, which indicates active oxidation processes and high level of ROS. At the stage of early apoptosis, the amount of ROS decreases as compared to the untreated cells.

Keywords:
cisplatin, reactive oxygen spices, apoptosis
Text
Publication text (PDF): Read Download
References

1. Szatrowski T.P., Nathan C.F. Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res., 1991, vol. 51, pp. 794-798.

2. Toyokuni S., Okamoto K., Yodoi J., Hiai H. Pers is tent oxidative s tres s in cancer. FEBS Lett., 1995, vol. 358, pp. 1-3.

3. Liou G.-Y., Storz P. Reactive oxygen species in cancer. Free Radic Res., 2010, vol. 44, no. 5, pp. 479-496.

4. Trachootham D., Alexandre J., Huang P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat. Rev. Drug Discov., 2009, vol. 8, no. 7, pp. 579-591.

5. Conklin K.A. Chemotherapy-associated oxidative stress: impact on chemotherapeutic effectiveness. Integrative Cancer Therapies, 2004, vol. 3, no. 4, pp. 294-300.

6. Florea A.-M., Bus selberg D. Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects. Cancers, 2011, vol. 3, no. 1, pp. 1351-1371.

7. Loskotova H., Brabec V. DNA interactions of cisplatin tethered to the DNA minor groove binder distamycin. Eur. J. Biochem., 1999, vol. 266, pp. 392-402.

8. Choi Y.-M., Kim H.-K., Shim W., Anwar M.A., Kwon J.-W., Kwon H.-K., Kim H.J., Jeong H., Kim H.M., Hwang D., Kim H.S., Choi S. Mechanism of Cisplatin-Induced Cytotoxicity Is Correlated to Impaired Metabolism Due to Mitochondrial ROS Generation. PLoS One, 2015, vol. 10, no. 8, p. 21.

9. Kim H.-J., Lee J-H., Kim S.-J., Oh G.S., Moon H.-D., Kwon K.-B., Park C., Park B.H., Lee H.-K, Chung S.-Y., Park R., So H.-S. Roles of NADPH Oxidases in Cisplatin-Induced Reactive Oxygen Species Generation and Ototoxicity. JNeurosci, 2010, vol. 30, no. 11, rr. 3933-3946.

10. Guo J, Xu B., Han Q., Zhou H., Xia Y., Gong C., Dai X., Li Z., Wu G. Ferroptosis: A Novel Anti-tumor Action for Cisplatin. Cancer Res. Treat., 2018, vol. 50, no. 2, pp. 445-460.

11. Marullo R., Werner E., Degtyareva N., Moore B., Altavilla G., Ramalingam S., Doetsch P. Cisplatin Induces a Mitochondrial-ROS Response That Contributes to Cytotoxicity Depending on Mitochondrial Redox Status and Bioenergetic Functions. PLoS One, 2013, vol. 8, no. 11, p. 15.

12. Pavelescu L.A. On reactive oxygen species measurement in living systems? J. Med. Life, 2015, vol. 8, pp. 38-42.

13. Belova A.S., Orlova A.G., Balalaeva I.V., Antonova N.O., Maslennikova A.V., Mishina N.M., Zagaynova E.V. Hydrogen peroxide detection in viable and apoptotic tumor cells under action of cisplatin and bleomycin. Photonics & Lasers in Medicine, 2016, vol. 5, no. 2, pp. 113-121.

14. Louis K.S., Siegel A.C. Cell viability analysis using trypan blue: manual and automated methods. Methods Mol. Biol., 2011, vol. 740, pp. 7-12.

15. Burow S., Valet G. Flow-cytometric characterization of stimulation, free radical formation, peroxidase activity and phagocytosis of human granulocytes with 2.7-dichlorofluorescein (DCF). Eur. J. Cell. Biol., 1987, vol. 43, pp. 128-133.

16. Rothe G., Valet G. Flow cytometric analysis of respiratory burst activity in phagocytes with hydroethidine and 2, 7-dichlorofl uorescin. J. Leukoc. Biol., 1990, vol. 47, pp. 440-448.

17. Belova A.S., Orlova A.G., Brilkina A.A., Maslennikova A.V. Chuvstvitel'nost' kletok linii Hela Kyoto transficirovannyh sensorom HyPer2 k deystviyu cisplatina. STM, 2014, t. 6, № 4, c. 7-13. [Belova A.S., Orlova A.G., Brilkina A.A., Maslennikova A.V., The sensitivity of Hela Kyoto cell line transfected with sensor HyPer2 to cisplatin. STM, 2014, vol. 6, no. 4, pp. 7-13. (In Russ.)]

18. Crow J.P. Dichlorodihydrofluorescein and dihydrorhodamine 123 are sensitive indicators of peroxynitrite in vitro: implications for intracellular measurement of reactive nitrogen and oxygen species. Nitric Oxide, 1997, vol. 1, pp. 145-157.

19. Wang H., Joseph J.A. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic. Biol. Med., 1999, vol. 27, pp. 612-616.

20. Franskevych D.V., Grynyuk I.I., Prylutska S.V., Matyshevska O.P. Modulation of cisplatin-induced reactive oxygen species production by fullerene C(60) in normal and transformed lymphoid cells. Ukr. Biochem. J., 2016, vol. 88, pp. 44-50.

21. Itoh T., Terazawa R., Kojima K., Nakane K., Deguchi T., Ando M., Tsukamasa Y., Ito M., Nozawa Y. Cisplatin induces production of reactive oxygen species via NADPH oxidase activation in human prostate cancer cells. Free Radic. Res., 2011, vol. 45, no. 9, pp. 1033-1039.

22. Kalyanaraman B., Darley-Usmar V., Davies K.J.A., Dennery P.A, Forman H.J., Grisham M.B., Mann G.E., Moore K., Jackson Roberts II L., Ischiropoulose H. Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Radic. Biol. Med., 2012, vol. 52, no. 1, p. 6.

23. Karlsson M., Kurz T., Brunk U.T., Nilsson. S.E., Frennesson C.I. What does the commonly used DCF test for oxidative stress really show? Biochem. J., 2010, vol. 428, pp. 183-190.

24. Qian S.Y., Buettner G.R. Iron and dioxygen chemistry is an important route to initiation of biological and free radical oxidations: an electron paramagnetic resonance spin trapping study. Free Radic. Biol. Med., 1999, vol. 26, pp. 1447-1456.


Login or Create
* Forgot password?