COMPLEXATION BETWEEN C60 FULLERENE AND ACRIDINE MUTAGEN ICR-191 IN AQUEOUS SOLUTION
Abstract and keywords
Abstract (English):
Intermolecular interactions in ‘C60 fullerene - ICR-191’ system were studied by means of various physico-chemical methods. UV/Vis spectroscopy, dynamic light scattering, atomic force microscopy and isothermal titration calorimetry data indicate the formation of strong non-covalent complexes between fullerene and mutagen molecules. Additional confirmation was obtained using molecular dynamics methods.

Keywords:
aggregation, C60 fullerene, mutagen, UV/Vis spectroscopy, dynamic light scattering, isothermal titration calorimetry
Text
Text (PDF): Read Download
References

1. Bakry R, Vallant R.M., Najam-ul-Haq M., Rainer M, Szabo Z., Huck C.W. [et al.] Medicinal applications of fullerenes. Int. J. Nanomed., 2007, vol. 2, pp. 639-649.

2. Prylutskyy Y., Evstigneev M.P, Pashkova I.S., Wyrzykowski D., Woziwodzka A, Golunski G. [et al.] Characterization of C60 fullerene complexation with antibiotic doxorubicin, Phys. Chem. Chem. Phys., 2014, pp. 23164-23172.

3. Skamrova G.B., Laponogov I., Buchelnikov A.S., Shckorbatov Y.G., Prylutska S.V., Ritter U. [et al.] Interceptor effect of C60 fullerene on the in vitro action of aromatic drug molecules, Eur. Biophys. J., 2014, vol. 43, pp. 265-276.; DOI: https://doi.org/10.1007/s00249-014-0960-2; EDN: https://elibrary.ru/UETORF

4. Fan J., Fang G., Zeng F., Wang X., Wu Su. Water-dispersible fullerene aggregates as a targeted anticancer prodrug with both chemo- and photodynamic therapeutic actions, Small, 2013, vol. 9, pp.613-621.

5. Hughes G.A. Nanostructure-mediated drug delivery, Nanomed.: Nanotechnol.Biol. Med., 2005, vol. 1, pp. 22-30.; DOI: https://doi.org/10.1016/j.nano.2004.11.009; EDN: https://elibrary.ru/MFQKSX

6. Shershakova N., Baraboshkina E., Andreev S., Purgina D., Struchkova I., Kamyshnikov O. [et al.] Anti-inflammatory effect of fullerene C60 in a mice model of atopic dermatitis, J. Nanobiotechnol,, 2016.

7. Ryan J.J., Bateman H.R., Stover A., Gomez G., Norton S.K., Zhao W. [et al.] Fullerene nanomaterials inhibit the allergic response. J. Immunol., 2007, vol.179, pp. 665-672.

8. Evstigneev M.P., Buchelnikov A.S., Voronin D.P., Rubin Y.V., Belous L.F., Prylutskyy Y.I. [et al.] Complexation of C60 fullerene with aromatic drugs. ChemPhysChem, 2013, rr. 568-578.

9. Buchelnikov A.S., Kostyukov V.V., Evstigneev M.P., Prylutskyy Y. Mechanism of complexation of the phenothiazine dye methylene blue with fullerene C60. Russ. J. Phys. Chem., 2013, vol. 87 (4), pp. 662-667.

10. Mchedlov-Petrossyan N.O., Klochkov V.K., Andievsky G.V., Ishchenko A.A., Interaction between colloidal particles of C60 hydrosol and cationic dyes. Chem. Phys. Lett., 2001, vol. 341, 2001, pp. 237-244.

11. Mukherjee S., Bauri A.K., Bhattacharya S. Spectroscopic and theoretical insights on effective and selective non-covalent binding between fullerenes (C60 and C70) and a designed diporphyrin in solution. Spectrochim. Acta A Mol. Biomol. Spectrosc, 2013, pp. 835-839.

12. Reddy B.K., Gadekar S.C., Anand V.G. Non-covalent composites of antiaromatic isophlorin-fullerene. Chem. Commun. (Camb.), 2015, vol. 51, pp. 8276-8279.; DOI: https://doi.org/10.1039/c5cc00771b; EDN: https://elibrary.ru/UQJILZ

13. Varanasi S.R., Guskova O.A., John A., Sommer J.U. Water around fullerene shape amphiphiles: a molecular dynamics simulation study of hydrophobic hydration. J. Chem. Phys., 2015, vol. 142, pp. 224-308.; DOI: https://doi.org/10.1063/1.4922322; EDN: https://elibrary.ru/UOPZVT

14. Prylutskyy Y.I., Petrenko V.I., Ivankov O.I., Kyzyma O.A., Bulavin L.A., Litsis O.O. [et al.] On the origin of C60 fullerene solubility in aqueous solution. Langmuir, 2014, vol. 30, pp. 3967-3970.; DOI: https://doi.org/10.1021/la404976k; EDN: https://elibrary.ru/SKQVWR

15. Golunski G., Woziwodzka A., Iermak I., Rychlowski M., Piosik J. Modulation of acridine mutagen ICR-191 intercalation to DNA by methylxanthines - analysis with mathematical models. Bioorg Med Chem, 2013.

16. Ritter U., Prylutskyy Y.I., Davidenko N.A., Cherepanov V.V., Senenko A.I., Marchenko O.A. [et al.] Structural features of highly stable reproducible C60 fullerene aqueous colloid solution probed by various techniques fullerenes. Nanotubes Carbon Nanostruct, 2015, vol. 23 (6), pp. 530-534.; DOI: https://doi.org/10.1080/1536383X.2013.870900; EDN: https://elibrary.ru/UEGHLL

17. Trott O., Olson A.J., AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem,, 2010, vol. 31, pp. 455-461.

18. Glatter O. A new method for the evaluation of small-angle scattering data. J. Appl. Cryst, 1977, vol. 4, pp. 415-421.

19. Svergun D.I. Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J. Appl. Cryst, 1992, vol. 25, pp. 495-503.

20. Shinohara N., Matsumoto K., Endoh S., Maru J., Nakanishi J. In vitro and in vivo genotoxicity tests on fullerene C60 nanoparticles. Toxicol. Lett,, 2009, vol. 191, pp. 289-296.; DOI: https://doi.org/10.1016/j.toxlet.2009.09.012; EDN: https://elibrary.ru/YBJHJJ

21. Prylutskyy Y.I., Buchelnikov A.S., Voronin D.P., Kostjukov V.V., Ritter U., Parkinson J.A. [et al.] C60 fullerene aggregation in aqueous solution. Phys. Chem. Chem. Phys., 2013, vol. 15, pp. 9351-9360.

22. Prylutskyy Yu.I., Evstigneev M.P., Cherepanov V.V., Kyzyma O.A., Bulavin L.A., Davidenko N.A. [et al.] Structural organization of C60 fullerene, doxorubicin and their complex in physiological solution as promising antitumor agents. J. Nanopart. Res., 2015, vol. 17, pp. 45-49.; DOI: https://doi.org/10.1007/s11051-015-2867-y; EDN: https://elibrary.ru/UEMSOL


Login or Create
* Forgot password?