KINETIC AND MULTI-PARTICLE BROWNIAN MODELS OF SWITCHING FLOWS IN MICROALGAE PRODUCING MOLECULAR HYDROGEN
Abstract and keywords
Abstract (English):
Structural dynamic (kinetic) and agent (multi-particle Brownian) models are used to study the role of pH in the regulation of electron fluxes in the areas of Photosystem II and PhotosystemI when switching the normal mode of active photosynthesis and carbon fixation to the regime of inactive photosynthesis and the production of molecular hydrogen. A multiscale kinetic model describes electron fluxes in PS II, an increase of the proton concentration in the stroma, and the reduction of the plastoquinone pool in the photosynthetic pathway due to the chloro-respiration chain. Based on this model a kinetic mechanism of the jump in the activity of Photosystem II, the stromal acidification in the Photosystem II region and the switching of the electron flow to the path of chloro-respiration is proposed. Multiparticle Brownian models describe the competitive interaction of ferredoxin molecules, which take electrons from PSI, to alternative acceptors: NAD(P)H (CO2 fixation pathway) and hydrogenase (hydrogen production path). The analysis of the results of multiparticle modeling and electrostatic properties of interacting molecules showed that the electron flux from ferredoxin to hydrogenase increases at alkaline pH values (~ 8-8.5) in the vicinity of the Photosystem I acceptor site. The results obtained confirm the hypothesis about the regulatory role of local pH values, widely discussed in the literature in the processes of photosynthesis.

Keywords:
photosynthesis, electronic transport, hydrogen-production from microalgae, kinetic models, multiparticle Brownian models, ferredoxin
Text
Text (PDF): Read Download
References

1. Rubin A.B., Riznichenko G.Yu. Mathematical biophysics. Springer, 2014

2. Stirbet A., Riznichenko G.Yu., Rubin A.B. Modeling chlorophyll a fluorescence transient: Relation to photosynthesis. Biochemistry (Moscow), 2014, vol. 79, pp. 291-323.

3. Gaffron H., Rubin J. Fermentative and photochemical production of hydrogen in algae. JGP, 1942, vol. 26, pp. 219-240.

4. Oey M., Sawyer A. L., Ross I.L., Hankamer B. Challenges and opportunities for hydrogen production from microalgae. Plant Biotechnol. J., 2016, vol. 14, pp. 1487-1499.

5. Melis A., Happe T. Hydrogen production. Green Algae as a source of energy. Plant Phys., 2001, vol. 12, pp. 3740-3748.

6. Tolstygina I.V., Antal T.K., Kosourov S.N., Krendeleva T.E., Rubin A.B., Tsygankov A.A. Hydrogen production by photoautotrophic sulfur-deprived Chlamydomonas reinhardtii pre-grown and incubated under high light. Biotech. Bioeng., 2009, vol. 102, no. 4, pp. 1-7.

7. Volgusheva A.A., Kukarskikh G.P., Krendeleva T.E., Rubin A.B., Mamedov F. Hydrogen photoproduction in green algae Chlamydomonas reinhardtii under Magnesium deprivation. RSC Advances, 2015, vol. 5, no. 8, pp. 5633-5637.

8. Antal T.K., Matorin D.N., Kukarskikh G.P., Lambreva M.D., Tyystjärvi E., Krendeleva T.E., Tsygankov A.A., Rubin A.B. Pathways of hydrogen photoproduction by immobilized Chlamydomonas reinhardtii cells deprived of sulfur. Int. J. Hyd. Energy, 2014, vol. 39, pp. 18194-18203.

9. Tsygankov A., Kousourov S., Siebert M., Ghirardi M. Hydrogen photoproduction under continuous illumination by sulfur-deprived, synchronous Ch. reinhardtii cultures. Int. J. Hyd. Energy, 2002, vol. 27, pp. 1239-1244.

10. Antal T.K., Krendeleva T.E., Rubin A.B. Study of Photosystem 2 Heterogeneity in the Sulfur Deficient Green Alga Chlamydomonas reinhardtii. Photosynth. Res., 2007, vol. 94, pp.13-22.

11. Tikhonov A.N. pH-Dependent regulation of electron transport and ATP synthesis in Chloroplasts. Photosynth. Res., 2013, vol. 116, pp. 511-534.

12. Plyusnina T.Yu., Riznichenko G.Yu., Rubin A.B. Regulation of electron transport pathways in cells of Chlamydomonas reinhardtii under stress conditions. J. of Plant Physiology, 2013, vol. 60, no. 4, pp. 518-528.

13. Yacoby I., Pochekailov S., Toporik H., Ghirardi M., King P.W., Zhang S. Photosynthetic electron partitioning between [FeFe]-hydrogenase and ferredoxin:NADP+-oxidoreductase (FNR) enzymes in vitro. Proc. Natl. Acad. Sci. USA, 2011, vol. 108, no. 23, pp. 9395-9401.

14. Diakonova A.N., Khruschev S.S., Kovalenko I.B., Riznichenko G.Yu, Rubin A.B. The role of electrostatic interactions in the formation of ferredoxin-ferredoxin NADP+ reductase and ferredoxin-hydrogenase complexes. Biophysics, 2016, vol. 61, no. 4, pp. 572-579.

15. Diakonova A.N., Khrushchev S.S., Kovalenko I.B., Riznichenko G.Yu, Rubin A.B. Influence of pH and ionic strength on electrostatic properties of ferredoxin, FNR, and hydrogenase and the rate constants of their interaction. Physical Biology, 2016, vol. 13, no. 5, p. 056004.

16. Cardona T., Sedoud A., Cox N., Rutherford A.W. [et al.] Charge separation in Photosystem II: A comparative and evolutionary overview. Biochimica et biophysica acta-bioenergetics, 2012, vol. 1817, pp. 26-43.

17. Gibasiewicz K., Dobek A., Breton J., Leibl W. Modulation of Primary Radical Pair Kinetics and Energetics in Photosystem II by the Redox State of the Quinone Electron Acceptor QA. Biophys. J., 2001, vol. 80, pp. 1617-1630.

18. Martin E., Samoilova R.I., Narasimhulu K.V., Lin T.-J., O’malley P.J., Wraight C.A., Dikanov S.A. Hydrogen bonding and spin density distribution in the QB semiquinone of bacterial reaction centers and comparison with the QA site. Am. Chem. Soc., 2011, vol. 133, pp. 5525-5537.

19. Antal T.K., Krendeleva T.E., Laurinavichene T.V., Makarova V.V., Ghirardi M.L., Rubin A.B., Tsygankov A.A., Seibert M. The dependence of algal H2 production on Photosystem II and O2 consumption activities in sulfur-deprived Chlamydomonas reinhardtii cells. Biochim. Biophys. Acta, 2003, vol. 1607, pp.153-160.

20. Plyusnina T.Yu., Riznichenko G.Yu., Rubin A.B. An analysis of the distribution of key metabolic fluxes in Chlamydomonas reinhardtii cells under the conditions of a sulfur deficit. Biophysics, 2017, vol. 62, pp. 385-395.

21. Kovalenko I.B., Abaturova A.M., Gromov P.A., Grachev E.A., Ustinin D.M., Riznichenko G.Yu., Rubin A.B. Direct simulation of plastocyanin and cytochrome f interactions in solution. Phys. Biol., 2006, vol. 3, pp. 121-129.

22. Kovalenko I., Knyazeva O., Antal T., Ponomarev V., Riznichenko G., Rubin A. Multiparticle Brownian dynamics simulation of experimental kinetics of cytochrome bf oxidation and photosystem 1 reduction by plastocyanin. Physiologia Plantarum, 2017, vol. 161, pp. 88-96.


Login or Create
* Forgot password?