A membrane based on PVA-Ag is manufactured using the electrospinning technique. This membrane is characterized by the methods: Scattering Electron Microscopy (SEM), Energy Dispertion Scattering (EDS) and X-Ray Difraction (XRD). In addition, its antibacterial properties are evaluated using two different strains of microorganisms: Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The results show that when these microorganisms are put in contact with the membrane to based of PVA with 8 % in silver, they would be resistant to die. However, the electrospinning method allows to easily increase the amount of silver to increase the antibacterial efficiency.
Electrospinning, composites membranes, bactericides, triple E
1. History of Electrospinning - Timeline. (08 de Octubre de 2013). Obtenido de Electrospintech.com, URL: http://electrospintech.com/espinhistory.html#.Wemg0bLhDIV.
2. Haik J., Kornhaber R., Blal B., Harats M. The Feasibility of a Handheld Electrospinning Device for the Application of Nanofibrous Wound Dressings. Advances in wound care, 2016, DOI:https://doi.org/10.1089/wound.2016.0722.
3. Vigneswari S., Murugaiyah V., Kaur G., Abdul Khalil H.P.S., Amirul A.A. Simultaneous dual syringe electrospinning system using benign solvent to fabricate nanofibrous P(3HB-co-4HB)/collagen peptides construct as potential leave-on wound dressing. Materials Science and Engineering C, 2016, vol. 3, DOI:https://doi.org/10.1016/j.msec.2016.03.102.
4. Unnithan A.R., Nejad A.G., Kurup Sasikala A.R., Thomas R.G., Jeong Y.Y., Murugesan P., Nasseri S., Wu D., Park C.H., Kim C.S. Electrospun zwitterionic nanofibers with in situ decelerated epithelialization property for non-adherent and easy removable wound dressing application. Chemical Engineering Journal, 2016, vol. 287, pp. 640-648.
5. Shankhwara N., Kumarb M., Mandalb B.B., Robic P.S., Srinivasana A. Electrospun Polyvinyl alcohol-Polyvinyl pyrrolidone Nanofibrous Membranes for Interactive Wound Dressing Application. Journal of Biomaterials Science, 2015, DOI:https://doi.org/10.1080/09205063.2015.1120474.
6. Jiang S., Chiyin Ma B., Reinholz J., Li Q., Wang J., Zhang K.A.I., Landfester K., Crespy D. Efficient Nanofibrous Membranes for Antibacterial Wound Dressing and UV Protection. ACS Appl. Mater. Interfaces, 2016, vol. 8, pp. 29915-29922.
7. Luan J., Wu J., Zheng Yu., Song W., Wang G., Wang G., Ding X. Impregnation of silver sulfadiazine into bacterial cellulose for antimicrobial and biocompatible wound dressing. Biomed. Mater., 2012, vol. 7, pp. 065006.
8. Mohseni M., Shamloo A., Aghababaei Z., Vossoughi M., Moravvej H. Antimicrobial Wound Dressing Containing Silver Sulfadiazine With High Biocompatibility: in vitro Study. Artificial Organs, 2016, vol. 40, no. 8, pp. 765-773.
9. Dong R.-H., Jia Yu.-X., Qin C.-C., Zhan L., Yan X., Cui L., Zhou Yu., Jiang X., Long Yu.-Z. In situ deposition of a personalized nanofibrous dressing via a handy electrospinning device for skin wound care. Nanoscale, 2016, vol. 8, pp. 3482-3488.
10. Sostek R. Synthetic Scaffolds, Harvard Apparatus Regenerative Tecnology, Patents W02014 110300A1.
11. Escherichia coli (ATCC® 25922™).