Hydrogen peroxide plays a dual role in the cell: it participates in the development of free radical oxidation and functions as a signal molecule that takes part in the regulation of a variety of cellular processes. This causes a particular interest to hydrogen peroxide. HyPer is a fluorescent sensor of protein nature, which allows monitoring of the dynamic of intracellular H2O2 concentration. We create a stably transfected cell line of human epidermoid carcinoma A431-HyPer. It was experimentally proved that the performed transfection had no significant effect on the resistance of the cells to photodynamic treatment with Fotoditazin®. Using the obtained A431-HyPer cell line, a monotonous increase in the H2O2 content in the cytoplasm of the cells pre-incubated with Photoditazine was registered for half an hour after irradiation at a dose of 50 J/cm2. An increase in the H2O2 content for a relatively long time after light irradiation allows to conclude that it produced in the secondary processes developing as a result of photodynamic treatment.
photodynamic therapy (PDT), hydrogen peroxide, protein sensor HyPer, Fotoditazin
1. Stranadko E.F. Istoricheskiy ocherk razvitiya fotodinamicheskoy terapii. Lazernaya medicina, 2002, t. 6, № 1, s. 4-8. [Stranadko E.F. Historical outline of the development of photodynamic therapy action. Lazernaja medicina, 2002, vol. 6, no. 1, pp. 4-8. (In Russ.)]; EDN: https://elibrary.ru/CIMPVH
2. Geynic A.V., Sorokatyy A.E., Yagudaev D.M., Truhmanov R.S. [i dr.] Fotodinamicheskaya terapiya. Istoriya sozdaniya metoda i ee mehanizmy. Lazernaya medicina, 2007, t. 11, № 3, s. 42-46. [Geinitz A.V., Sorokaty A.E., Yagudajev D.M., Trukhmanov R.S. Photodynamic therapy. The history and mechanisms of its action. Lazernaja medicina, 2007, vol. 11, no. 3, pp. 42-46. (In Russ.)]; EDN: https://elibrary.ru/IAYVQF
3. Uzdenskiy A.B. Kletochno-molekulyarnye mehanizmy fotodinamicheskoy terapii. SPb.: Nauka, 2010, 327 s. [Uzdensky A.B. Cellular and molecular mechanisms of photodynamic therapy. Saint Peterburg: Nauka, 2010, 327 p. (In Russ.)]; EDN: https://elibrary.ru/QLXTXH
4. Allison R.R., Downie G.H., Cuenca R., Hu X.H., Childs C.J., Sibata C.H. Photosensitizers in clinical PDT. Photodiagnosis and photodynamic therapy, 2004, vol. 1, no. 1, pp. 27-42.; DOI: https://doi.org/10.1016/S1572-1000(04)00007-9; EDN: https://elibrary.ru/LOXLFZ
5. Doncov V.I., Krut'ko V.N., Mrikaev B.M., Uhanov S.V. Aktivnye formy kisloroda kak sistema: znachenie v fiziologii, patologii i estestvennom starenii. Trudy instituta sistemnogo analiza rossiyskoy akademii nauk, 2006, t. 19, s. 50-69. [Dontsov V.I., Krut’ko V.N., Mrikaev B.M., Ukhanov S.V. Reactive oxygen species as a system: significance in physiology, pathology and natural ageing. Proceedings SAI RAS, 2006, vol. 19, pp. 50-69. (In Russ.)]; EDN: https://elibrary.ru/KBAFQH
6. Vladimirov Yu.A., Potapenko A.Ya. Fiziko-himicheskie osnovy fotobiologicheskih processov. M.: Drofa, 2006. [Vladimirov Yu.A., Potapenko A.Ya. Fiziko-khimicheskie osnovy fotobiologicheskikh protsessov: uchebnik dlya vuzov , Moscow: Drofa, 2006. (In Russ.)]; EDN: https://elibrary.ru/QKORJX
7. Krasnovskiy A.A. Pervichnye mehanizmy fotoaktivacii molekulyarnogo kisloroda. Istoriya razvitiya i sovremennoe sostoyanie issledovaniy (obzor). Biohimiya, 2007, t. 72, № 10, s. 1311-1329. [Krasnovsky A.A. Primary mechanisms of photoactivation of molecular oxygen. History of development and the modern status of research. Biochemistry (Moscow), 2007, vol. 72, no. 10, pp. 1065-1080. (In Russ.)]; EDN: https://elibrary.ru/ICDBJB
8. Chen H., Tian J., He W., Guo Z. H2O2-activatable and O2-evolving nanoparticles for highly efficient and selective photodynamic therapy against hypoxic tumor cells. Journal of the American Chemical Society, 2015, vol. 137, no. 4, pp. 1539-1547.
9. Price M., Reiners J.J., Santiago A.M., Kessel D. Monitoring singlet oxygen and hydroxyl radical formation with fluorescent probes during photodynamic therapy. Photochemistry and photobiology, 2009, vol. 85, no. 5, pp. 1177-1181.
10. Halliwell B. Biochemistry of oxidative stress, 2007.
11. Storz G., Tartaglia L.A., Ames B.N. Transcriptional regulator of oxidative stress-inducible genes: direct activation by oxidation. Science, 1990, vol. 248, no. 4952, pp. 189-194.; EDN: https://elibrary.ru/BHOINL
12. Rhee S.G. [et al.] Methods for detection and measurement of hydrogen peroxide inside and outside of cells. Molecules and cells, 2010, vol. 29, no. 6, pp. 539-549.; DOI: https://doi.org/10.1007/s10059-010-0082-3; EDN: https://elibrary.ru/NAJWHX
13. Belousov V.V. Fradkov A.F., Lukyanov K.A., Staroverov D.B., Shakhbazov K.S., Terskikh A.V., Lukyanov S. Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nature methods, 2006, vol. 3, no. 4, p. 281.; DOI: https://doi.org/10.1038/nmeth866; EDN: https://elibrary.ru/LJZBOT
14. Bilan D.S. Geneticheski kodiruemye fluorescentnye sensory okislitel'no-vosstanovitel'nyh processov v zhivyh sistemah. Bioorganicheskaya himiya, 2015, t. 41, № 3, s. 259-274. [Bilan D.S., Lukyanov S.A., Belousov V.V. Genetically encoded fluorescent sensors for redox processes. Russian Journal of Bioorganic Chemistry, 2015, vol. 41, no. 3, pp. 231-244. (In Russ.)]; DOI: https://doi.org/10.7868/S0132342315020037; EDN: https://elibrary.ru/TPWSZP
15. Lukyanov K.A., Belousov V.V. Genetically encoded fluorescent redox sensors. Biochimica et Biophysica Acta (BBA)-General Subjects, 2014, vol. 1840, no. 2, pp. 745-756.; DOI: https://doi.org/10.1016/j.bbagen.2013.05.030; EDN: https://elibrary.ru/SKKLEB
16. Freshni R.Ya. Kul'tura zhivotnyh kletok. Prakticheskoe rukovodstvo. M.: Binom, 2010, t. 2. [Freshney R.J. Culture of Animal Cells: A Manual of Basic Technique. Wiley-Liss, 1987, p. 397.]
17. Shilyagina N.Yu., Plehanov V.I., Shkunov I.V., Shilyagin P.A., Dubasova L.V., Brilkina A.A., Sokolova E.A., Turchin I.V., Balalaeva I.V. Svetodiodnyy izluchatel' dlya issledovaniya in vitro svetovoy aktivnosti preparatov dlya fotodinamicheskoy terapii. Sovremennye tehnologii v medicine, 2014, t. 6, № 2. [Shilyagina N.Y., Plekhanov V.I., Shkunov I.V., Shilyagin P.A., Dubasova L.V., Brilkina A.A., Sokolova E.A., Turchin I.V., Balalaeva I.V. LED light source for in vitro study of photosensitizing agents for photodynamic therapy. Modern Techologies in Medicine, 2014, vol. 6, no. 2. (In Russ.)]; EDN: https://elibrary.ru/SFPTMF
18. Belyy Yu.A., Tereschenko A.V., Volodin P.L., Kaplan M.A. [i dr.] Lechenie melanom sosudistoy obolochki glaza malogo razmera metodom fotodinamicheskoy terapii s preparatom fotoditazin. Rossiyskiy bioterapevticheskiy zhurnal, 2008, t. 7, № 4. [Belyy Yu.A, Tereschenko A.V., Volodin P.L., Kaplan M.A. Photodynamic therapy with photodytazin for the treatment of the small choroidal melanomas. Rossiiskii bioterapevticheskii zhurnal, 2008, vol. 7, no. 4. (In Russ.)]
19. Volgin V.N., Stranadko E.F. Izuchenie farmakokinetiki fotoditazina pri bazal'no-kletochnom rake kozhi. Lazernaya medicina, 2011, t. 15, № 1, s. 33-37. [Volgin V.N., Stranadko Ye.F. Studies of Photoditazin pharmacokinetics in basal-cell skin cancer. Lazernaja medicina, 2011, vol. 15, no. 1, pp. 33-37. (In Russ.)]; EDN: https://elibrary.ru/NEINZB
20. Brilkina A.A., Dubasova L.V., Balalaeva I.V., Orlova A.G., Sergeeva E.A., Katichev A.R., Shahova N.M. Issledovanie vnutrikletochnogo raspredeleniya fotosensibilizatorov treh tipov v opuholevyh kletkah cheloveka metodom lazernoy skaniruyuschey mikroskopii. Tehnologii zhivyh sistem, 2011, t. 8, № 8, s. 32-39. [Brilkina A.A., Dubasova L.V., Balalaeva I.V., Orlova A.G., Sergeeva E.A., Katichev A.R., Shakhova N.M. The study of subcellular distribution of three types of photosensitizers in human cancer cells by laser scanning microscopy. Technologies of Living Systems, 2011, vol. 8, no. 8, pp. 32-39. (In Russ.)]; EDN: https://elibrary.ru/OZFMFN
21. Brilkina A.A., Peskova N.N., Dudenkova V.V., Gorokhova A.A., Sokolova E.A., Balalaeva I.V. Monitoring of hydrogen peroxide production under photodynamic treatment using protein sensor HyPer. Journal of Photochemistry and Photobiology B: Biology, 2018, vol. 178, pp. 296-301.; DOI: https://doi.org/10.1016/j.jphotobiol.2017.11.020; EDN: https://elibrary.ru/XNOHFV
22. DeRosa M.C., Crutchley R.J. Photosensitized singlet oxygen and its applications. Coordination Chemistry Reviews, 2002, vol. 233, pp. 351-371.; EDN: https://elibrary.ru/BBQPPV
23. Yu Z., Sun Q., Pan W., Li N., Tang B. A near-infrared triggered nanophotosensitizer inducing domino effect on mitochondrial reactive oxygen species burst for cancer therapy. Acs Nano, 2015, vol. 9, no. 11, pp. 11064-11074.; DOI: https://doi.org/10.1021/acsnano.5b04501; EDN: https://elibrary.ru/VFXJIN
24. Chernyak B.V., Izyumov D.S., Lyamzaev K.G., Pashkovskaya A.A., Pletjushkina O.Y., Antonenko Y.N., Sakharov D.V., Wirtz K.W.A., Skulachev V.P. Production of reactive oxygen species in mitochondria of HeLa cells under oxidative stress. Biochimica et Biophysica Acta, 2006, vol. 1757, pp. 525-534.
25. Zhao H., Xing D., Chen Q. New insights of mitochondria reactive oxygen species generation and cell apoptosis induced by low dose photodynamic therapy. European Journal of Cancer, 2011, vol. 47, no. 18, pp. 2750-2761.
26. Luo J., Li L., Zhang Y., Spitz D.R., Buettner G.R., Oberley L.W., Domann F.E. Inactivation of primary antioxidant enzymes in mouse keratinocytes by photodynamically generated singlet oxygen. Antioxid Redox Signal, 2006, no. 8, pp. 1307-1314.