Nizhny Novgorod, Nizhny Novgorod, Russian Federation
Nizhny Novgorod, Nizhny Novgorod, Russian Federation
Modern strategies and approaches for biomedical diagnostics based on biohybrid photoluminescent nanomaterials are being actively developed. One of the promising areas is the synthesis of theranostic complexes for their targeted delivery and highly sensitive detection of tumor cells. In the present work we have created two-component nanocomplexes based on upconversion nanoparticles, highly effective contrast agents with unique photoluminescence properties. A non-immunoglobulin targeting protein DARPin9-29, which can selectively recognize the oncomarker HER2/neu, was used as a targeting module. A specifically binding of created complexes to the human breast adenocarcinoma SK-BR-3 cells overexpressing the HER2/neu-receptor has been shown. The obtained results allow to consider the proposed bioconjugation scheme as a promising platform for creating theranostic agents.
HER2/neu, DARPin9-29, theranostics, upconversion nanoparticles, HER2/neu, DARPin9-29
1. Grebenik E.A., Generalova A.N., Nechaev A.V., Haydukov E.V., Mironova K.E., Stremovskiy O.A., Lebedenko E.N., Zvyagin A.V., Deev S.M. Specificheskaya vizualizaciya opuholevyh kletok s pomosch'yu antistoksovyh nanofosfórov. Acta naturae, 2014, t. 6, № 4 (23), s. 51-57. [Grebenik E.A., Generalova A.N., Nechaev A.V., Khaydukov E.V., Mironova K.E., Stremovskiy O.A., Lebedenko E.N., Zvyagin A.V., Deyev S.M. Acta naturae, 2014, vol. 6, no. 4 (23), pp. 51-57. (In Russ.)]
2. Friedman A.D., Claypool S.E., Liu R. The Smart Targeting of Nanoparticles. Current Pharmaceutical Design, 2013, 19, pp. 6315-6329.
3. Sreenivasan V.K. Luminescent nanoparticles and their applications in the life sciences. Journal of physics. Condensed matter: An Institute of Physics journal, 2013, vol. 25, iss. 19, pp. 1-23.
4. Grebenik E.A., Kostyuk A.B., Deyev S.M. Upconversion nanoparticles and their hybrid assemblies for biomedical applications. Russ. Chem. Rev., 2016, vol. 85, no. 12, pp. 1277-1296.; DOI: https://doi.org/10.1070/RCR4663; EDN: https://elibrary.ru/YWBLFF
5. Kim J. Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy. Chem. Soc. Rev., 2009, vol. 38, no. 2, pp. 372-390.
6. Xie J., Lee S., Chen X. Nanoparticle-based theranostic agents. Advanced Drug Delivery Reviews, 2010, vol. 62, pp. 1064-1079.
7. Zvyagin A.V., Panchenko V.Ya., Nechaev A.V., Shehter A.B., Deev S.M., Ahmanov A.S., Guler A.E., Ivukina E.I., Generalova A.N., Semchishen V.A., Haydukov E.V. Antistoksovy nanolyuminofory: Perspektivy primeneniya v biologii i medicine. Sbornik materialov V Troickoy konferencii «Medicinskaya fizika i innovacii v medicine», 2012, t. 2, c. 8-9. [Zvyagin A.V., Panchenko V.Ya., Nechaev A.V., Shekhter A.B., Deyev S.M., Akhmatova A.S., Guler A.E., Ivukina E.I., Generalova A.N., Semchishen V.A., Khaydukov E.V. Antistoksovy nanolyuminofory: Perspektivy primeneniya v biologii i medicine. Sbornik materialov V Troickoj konferencii «Medicinskaya fizika i innovacii v medicine», 2012, vol. 2, pp. 8-9. (In Russ.)]
8. Chen J., Zhao J.X. Upconversion Nanomaterials: Synthesis, Mechanism, and Applications in Sensing. Sensors, 2012, vol. 12, pp. 2414-2435.; DOI: https://doi.org/10.3390/s120302414; EDN: https://elibrary.ru/PHCAQT
9. Generalova A.N., Zubov V.P., Haydukov E.V. Nanokristally s antistoksovoy fluorescenciey na puti v medicinu. Priroda, 2016, t. 11, № 1215, s. 24-32. [Generalova A.N., Zubov V.P., Khaydukov E.V. Nanocrystals with Anti-Stokes Fluorescence on the Way to Medicine. Nature, 2016, vol. 11, no. 1215, pp. 24-32. (In Russ.)]
10. Kostyuk A.B., Guryev E.L., Vorotnov A.D., Sencha L.M., Peskova N.N., Sokolova E.A., Liang L., Vodeneev V.A., Balalaeva I.V., Zvyagin A.V. Real-time tracking of Yb3+, Tm3+ doped NaYF4 nanoparticles in living cancer cells. Sovremennye tehnologii v medicine, 2018, vol. 10, no. 1, pp. 57-63.; DOI: https://doi.org/10.17691/stm2018.10.1.07; EDN: https://elibrary.ru/YTUZEV
11. Haydukov E.V, Rocheva V.V., Semchishen V.A., Seminogov V.N., Sokolov V.I., Zvyagin A.V., Ahmanov A.S., Panchenko V.Ya., Nechaev A.V., Generalova A.N., Shehter A.B. Opticheskaya vizualizaciya opuholevyh tkaney s primeneniem antistoksovyh nanochastic. Vestnik rossiyskogo fonda fundamental'nyh issledovaniy, 2014, t. 4, № 84, s. 7-17. [Khaydukov E.V., Rocheva V.V., Semchishen V.A., Seminogov V.N., Sokolov V.I., Zvyagin A.V., Akhmanov A.S., Panchenko V. Ya., Nechaev A.V., Generalova A.N., Shekhter A.B. Applications of Upconversion Nanoparticles in Optical Bioimaging of the Tumor Tissue. Vestnik Rossiyskogo fonda fundamental'nykh issledovaniy [RFBR Journal], 2014, vol. 4, no. 84, pp. 7-17. (In Russ.)]; EDN: https://elibrary.ru/TUVKXL
12. Naccache R., Vetrone F., Mahalingam V., Cuccia L.A., Capobianco J.A. Controlled Synthesis and Water Dispersibility of Hexagonal Phase NaGdF4:Ho3+/Yb3+ Nanoparticles. Chemistry of Materials, 2009, vol. 21, no. 4, pp. 717-723.
13. Wang L.Y., Zhang Y., Zhu Y.Y. One-Pot Synthesis and Strong Near-Infrared Upconversion Luminescence of Poly(acrylic acid)-Functionalized YF3:Yb3+/Er3+ Nanocrystals. Nano Research, 2010, vol. 3, no. 5, pp. 317-325.; DOI: https://doi.org/10.1007/s12274-010-1035-z; EDN: https://elibrary.ru/RXBDXE
14. Deyev S.M., Lebedenko E.N. Targeted Bifunctional Proteins and Hybrid Nanoconstructs for Cancer Diagnostics and Therapies. Molecular Biology, 2017, vol. 51, no. 6, pp. 788-803.; DOI: https://doi.org/10.1134/S002689331706005X; EDN: https://elibrary.ru/OYMYAZ
15. Slamon D.J., Clark G.M., Wong S.G., Levin W.J., Ullrich A., McGuire W.L. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science, 1987, vol. 235, no. 4785, pp. 177-182.; EDN: https://elibrary.ru/IDWNQR
16. Ross J.S., Slodkowska E.A., Symmans W.F., Pusztai L., Ravdin P.M., Hortobagyi G.N. The HER-2 receptor and breast cancer: ten years of targeted anti-HER-2 therapy and personalized medicine. Oncologist, 2009, vol. 14, no. 4, pp. 320-368.; DOI: https://doi.org/10.1634/theoncologist.2008-0230; EDN: https://elibrary.ru/MNDFKL
17. Mai H.-X., Zhang Y.-W., Sun L.-D., Yan C.-H. Size- and Phase-Controlled Synthesis of Monodisperse NaYF4:Yb,Er Nanocrystals from a Unique Delayed Nucleation Pathway Monitored with Upconversion Spectroscopy. The Journal of Physical Chemistry, 2007, vol. 111, no. 37, pp. 13730-13739.
18. Dong A., Ye X., Chen J., Kang Y., Gordon T., Kikkawa J. M., Murray C.B. A Generalized Ligand-Exchange Strategy Enabling Sequential Surface Functionalization of Colloidal Nanocrystals. Journal of the American Chemical Society, 2011, vol. 133, no. 4, pp. 998-1006.; DOI: https://doi.org/10.1021/jal08948z; EDN: https://elibrary.ru/OAQSVF
19. Hu M., Zhao J., Ai X., Budanovic M., Mu J., Webster R.D., Cao Q., Mao Z., Xing B. Near infrared light-mediated photoactivation of cytotoxic Re(I) complexes by using lanthanide-doped upconversion nanoparticles. Dalton Trans., 2016, vol. 45, pp. 14101-14108.
20. Steiner D., Forrer P., Plückthun A. Efficient selection of DARPins with sub-nanomolar affinities using SRP phage display. J. Mol. Biol., 2008, vol. 382, no. 5, pp. 1211-1227.; DOI: https://doi.org/10.1016/j.jmb.2008.07.085; EDN: https://elibrary.ru/KFUWVL
21. Binz H.K., Amstutz P., Kohl A., Stumpp M.T., Briand C., Forrer P., Grutter M.G., Pluckthun A. High-affinity binders selected from designed ankyrin repeat protein libraries. Nature Biotechnology, 2004, vol. 22, no. 5, pp. 575-582.
22. Sokolova E., Proshkina G., Kutova O., Shilova O., Ryabova A., Schulga A., Stremovskiy O., Zdobnova T., Balalaeva I., Deyev S. Recombinant targeted toxin based on HER2-specific DARPin possesses a strong selective cytotoxic effect in vitro and a potent antitumor activity in vivo. Journal of controlled release: official journal of the Controlled Release Society, 2016, vol. 233, pp. 48-56.; DOI: https://doi.org/10.1016/j.jconrel.2016.05.020; EDN: https://elibrary.ru/WWIXHH
23. Deyev S.M., Lebedenko E.N., Petrovskaya L.E., Dolgikh D.A., Gabibov A.G., Kirpichnikov M.P. Man-made antibodies and immunoconjugates with desired properties: function optimization using structural engineering. Russian Chemical Reviews, 2015, vol. 84, no. 1, pp. 1-26.; DOI: https://doi.org/10.1070/RCR4459; EDN: https://elibrary.ru/UEPFJV
24. Interlandi G., Wetzel S.K., Settanni G., PluckthunA., Caflisch A. Characterization and further stabilization of designed ankyrin repeat proteins by combining molecular dynamics simulations and experiments. Journal of Molecular Biology, 2008, vol. 375, no. 3, pp. 837-854.; DOI: https://doi.org/10.1016/j.jmb.2007.09.042; EDN: https://elibrary.ru/KFVIGJ
25. Zahnd C., Kawe M., Stumpp M.T., de Pasquale C., Tamaskovic R., Nagy-Davidescu G., Dreier B., Schibli R., BinzH.K., Waibel R., Plückthun A.A. Efficient tumor targeting with high-affinity designed ankyrin repeat proteins: effects of affinity and molecular size. Cancer Research, 2010, vol. 70, no. 4, pp. 1595-1605.; DOI: https://doi.org/10.1158/0008-5472.CAN-09-2724; EDN: https://elibrary.ru/MZLCJZ
26. Hermanson G. Bioconjugate Techniques. Academic Press, 2008, 1200 r.
27. Sokolova E., Guryev E., Yudintsev A., Vodeneev V., Deyev S., Balalaeva I. HER2-specific recombinant immunotoxin 4D5scFv-PE40 passes through retrograde trafficking route and forces cells to enter apoptosis. Oncotarget, 2017, vol. 8, no. 13, pp. 22048-22058.; DOI: https://doi.org/10.18632/oncotarget.15833; EDN: https://elibrary.ru/YVOEUB