Black microscopic fungi, resistant to several stresses such as ionizing radiation, low nutrient and water content, temperature fluctuations etc., are widely distributed in various extremophilic habitats such as Arctic, Antarctic, Atakama desert, the International Space Station, places contaminated by toxic metals and ionizing radiation, and the host cells (pathogens of plants, animals and humans). Stress-resistance of these polyextremophilic fungi is provided mainly by melanin pigments, the products of polymerization of phenolic and indolic compounds. High diversity of melanin precursors as well as the biosynthesis pathways determine high variability of these pigments in different fungal species. Though formed via different precursors, polymerized melanins possess common properties. Unique melanin properties include an ability to absorb the energy of electromagnetic radiation in a wide wavelength range, permanent free radical signal, hybrid ionic -electronic conductance resulting in efficient electromagnetic energy dissipation, metal chelation, free radical -scavenging , expression of antioxidant activities. These properties determine the main functions of fungal melanins: protection against stressful environments, and its potential role in radiation energy capture and utilization in biochemical reactions. This review provides some examples of stress resistance of black microscopic fungi from various extreme ecological nishes and the properties of melanins allowing extremophilic fungi to survive in destructive to the majority of other species habitats.
extremophilic microscopic fungi, stress tolerance, melanin pigments
1. Drauzio E.N., Rangel R. D., Finlay J. E., Hallsworth J.H., Dadachova K., Gadd J.M. Fungal strategies for dealing with environment- and agriculture induced stresses. Fungal Biology, 2018, vol. 122, pp. 602-612.
2. Hulot G., Gallet Y. Do superchrons occur without any palaeomagnetic warning? Earth Planet Sci. Lett., 2003, vol. 210, pp. 191-20.
3. Gostincar C., Muggia L., Grube M. Polyextremotolerant black fungi: oligotrophism, adaptive potential, and a link to lichen symbioses. Front. Microbiol., 2012, vol.3, pp. 390-395.
4. Cordero R.J.B., Casadevall A. Function of fungal melanins beyong virulence. Fungal Boil. Rev., 2017, vol. 31, pp. 99-112.
5. d’Ischia M., Pezzella A., Meredith P., Sarna T. Chemical and structural diversity in eumelanins - unexplored bio-optoelectronic materials. Angew Chem. Int., 2009, vol. 48, pp. 3914-3921.
6. Roulin. A. Melanin-based colour polymorphism responding to climate change. Glob. Chang. Biol., 2014, vol. 20, pp. 3344-3350.
7. Durán N., Teixeira M.F.S., De Conti R., Esposito E. Ecological-friendly pigments from fungi. Crit. Rev. Food Sci. Nutr., 2002, vol. 42, pp. 53-66.
8. Singh S., Malhotra A.G., Pandey A., Pandey K.M. Computational model for pathway reconstruction to unravel the evolutionary significance of melanin synthesis. Bioinformation, 2013, vol. 9, pp. 94-100.
9. Plonka P.M., Grabacka M. Melanin synthesis in microorganisms: biotechnological and medical aspects. Acta Biochem. Polonica, 2006, vol. 53, pp. 429-443.
10. Toledo A.V., Franco M.E., SM, Lopez S.M., Troncozo M.I., Saparrat M.C., Balatti P.A. Melanins in fungi: types, localization and putative biological roles. Physiol. Mol. Plant Pathol., 2017, vol. 9, pp. 2-6.
11. Treseder K.K., Lennon J.T. Fungal traits that drive ecosystem dynamics in land. Microbiology and Molecular Biology Rev., 2015, vol.79, pp. 243-262.
12. Sterflinger K., Tesei D., Zakharova K., Fungi in hot and cold deserts with particular reference to microcolonial fungi. Fung. Ecol., 2012, vol. 5, pp.453-462.
13. Gonçalves V.N., Cantrell C.L., Werge D.L., Fereira M.C., Soares M.A., Sacob M.A. et al. Fungi associated with rocks of the Atacama Desert: taxonomy, distribution, diversity, ecology and bioprospection for bioactive compounds. Environ. Microbiol., 2016, vol. 18, pp. 232-245.
14. Dong C., Yao Y. Isolation, characterization of melanin derived from Ophiocordyceps sinensis, an entomogenous fungus endemic to the Tibetan Plateau. J. Biosci. Bioeng., 2012, vol. 113, pp. 474-479.
15. Rédou V., Navarri M., Meslet-Cladiére L., Barbier G., Burgaud G. Species Richness and Adaptation of Marine Fungi from Deep-Subseafloor Sediments. Appl. Env. Microbiol., 2015, vol. 81, pp. 3571-3573.
16. Barbier G., Vandenkoornhuyse Ph. Fungal diversity in deep-sea hydrothermal ecosystems. Appl. Environ. Microbiol., 2009, vol. 75. pp. 6415-6421.
17. Gorbushina A.A. 2007. Life on the rocks. Environ. Microbiol., 2007, vol. 9, pp. 1613-1631.
18. Kul’ko A.B., Marfenina O.E., The distribution of microscopic fungi in soils and surface air along some Moscow roads. Microbiology, 2001, vol. 70, pp.613-616. (In Russ.)
19. Marfenina O.E., Kul’ko A.B., Ivanova A.E., Sogonov M.V. Microscopic fungi in urban outdoor environments. Mikol. Fitopatol., 2002, vol. 36, pp. 22-32.
20. Gessler N.N., Egorova A.S., Belozerskaia T.A. Melanin pigments of fungi under extreme environmental conditions. Prikl. Biokhim Mikrobiol., 2014, vol. 50, pp. 125-134. (In Russ.)
21. Zhdanova N.N., Tugay T., Dighton J., Zheltonozhsky V., McDermott P. Ionizing radiation attracts soil fungi. Mycol. Res., 2004, vol. 108, pp.1089-1096.
22. Gorbushina A.A., Beck A., Schulte A. Microcolonial rock inhabiting fungi and lichen photobionts: evidence for mutualistic interactions. Mycol. Res., 2005, vol. 109, pp. 1288-1296.
23. Rosa L.H., Vaz A.B.M., Caligiorne R.B., Campolina S., Rosa C.A. Endophytic fungi associated with the Antarctic grass Deschampsia antarctica (Poaceae). Polar Biol., 2009, vol. 32, pp. 161-167.
24. Belozerskaya T., Gessler N.N., Averyanov A.A. Melanin pigments of fungi. Fungal metabolites. Springer Nature Switzerland AG., 2017, 1001 p.
25. Bell A., Wheeler M.H. Biosynthesis and functions of fungal melanins. Annu. Rev. Phytopathol., 1986, vol. 24, pp. 411-451.
26. Eisenman H.C., Casadevall A. Synthesis and assembly of fungal melanin. Appl. Microbiol. Biotechnol., 2012, vol. 93, pp. 931-940.
27. Funa N., Ohnishi Y., Fuji I., Shibuya M., Ebizuka Y., Horinouchi S. A new pathway for polyketide synthesis in microorganisms. Nature, 1999, vol. 400, pp. 897-899.
28. Langfelder K., Streibel M., Jahn B., Haase G., Brakhage A.A. Biosynthesis of fungal melanins and their importance for human pathogenic fungi. Fungal Genet Biol., 2003, vol. 38, pp. 143-158.
29. Wheeler M.H., Bell A.A. Melanins and their importance in pathogenic fungi. Curr. Top. Med. Mycol., 1988, vol. 2, pp. 338-387.
30. Cowley R.E., Tian L., Solomon E.I., Mechanism of O2 activation and substrate hydroxylation in noncoupled binuclear copper monooxygenases. Proc. Natl. Acad. Sci. USA., 2016, vo1. 13, pp. 12035-12040.
31. Mauch, R.M., Cunha V.O., Dias, A.L., 2013. The copper interference with the melanogenesis of Cryptococcus neoformans. Rev. Inst. Med. Trop. Sao Paulo, 2013, vol. 55, pp. 117-120.
32. Heinekamp T., Thywißen A., Macheleidt J., Keller S., Valiante V., Brakhage A.A. Aspergillus fumigatus melanins: interference with the host endocytosis pathway and impact on virulence. Front Microbiol., 2013, vol. 3, pp. 440-447.
33. Sapmak A., Boyce K.J., Andrianopoulos A., Vanittanakom N. The pbrB gene encodes a laccase required for DHN-melanin synthesis in conidia of Talaromyces (Penicillium). PLoS One, 2015, vol.10, e0122728.
34. Geib E., Gressler M., Viediernikova I., Hillmann F., Jacobsen I.D., Nietzsche S., Hertweck C., Brock M. A non-canonical melanin biosynthesis pathway protects Aspergillus terreus conidia from environmental stress. Cell Chem. Biol., 2016, vol. 23, pp. 587-597.
35. Fetzner R, Seither K, Wenderoth M, Herr A, Fischer R. Alternaria alternata transcription factor CmrA controls melanization and spore development. Microbiology, 2014, vol.160, pp. 1845-1854.
36. Wang Y., Hu X., Fang Yu., Anchieta A., Goldman P. H., Hernandez D., Klosterman S.J. Transcription factor VdCmr1 is required for pigment production, protection from UV irradiation, and regulates expression of melanin biosynthetic genes in Verticillium dahlia. Microbiology, 2018, vol. 164, pp. 685-696.
37. Chatterjee S., Prados-Rosales R., Itin B., Casadevall A., Stark R.E. Solid-state NMR reveals the carbon-based molecular architecture of Cryptococcus neoformans fungal eumelanins in the cell wall. J. Biol. Chem., 2015, vol. 290, pp. 13779-13790.
38. Casadevall A., Nakouzi A., Crippa P.R., Eisner M. Fungal melanins differ in planar stacking distances. PLoS One, 2012, vol. 7, e30299.
39. Eisenman H.C., Nosanchuk J.D., Webber J.B., Emerson R.J., Camesano T.A., Casadevall A. Microstructure of cell wall-associated melanin in the human pathogenic fungus Cryptococcus neoformans. Biochemistry, 2005, vol. 44, pp. 3683-3693.
40. Dong C., Yao Y. Isolation, characterization of melanin derived from Ophiocordyceps sinensis, entomogenous fungus endemic to the Tibetan Plateau. J. Biosci. Bioeng., 2012, vol. 113, pp. 474-479.
41. Hegnauer H., Nyhlen L.E., Rast D.M. Ultrastructure of native and synthetic Agaricus bisporus melanins - implications as to the compartmentation of melanogenesis in fungi. Exp. Mycology, 1985, vol. 3, pp. 221-229.
42. Gadd G.M., de Rome L. Biosorption of copper by fungal melanin. Appl. Microbiol. Biotechnol., 1988, vol. 29, pp. 610-617.
43. Upadhyay S., Xu X., Lowry D., Jackson J. C., Roberson R. W., Lin X. Subcellular compartmentalization and trafficking of the biosynthetic machinery for fungal melanin. Cell Rep., 2016, vol. 14, vol. 2511-2518.
44. Rodrigues M.L., Nakayasu E.S., Oliveira D.L., Nimrichter L., Nosanchuk J.D., Almeida I.C., Casadevall A. Extracellular vesicles produced by Cryptococcus neoformans contain protein components associated with virulence. Eukaryot. Cell, 2008, vol. 7, pp. 58-67.
45. Jacobson E.S., Ikeda R. Effect of melanization upon porosity of the cryptococcal cell wall. Med. Mycol., 2005, vol. 43, pp. 327-333.
46. Rehnstrom A.L., Free S.J. The Isolation and Characterization of Melanin-Deficient Mutants of Monilinia fructicola. Physiol. Mol. Plant Pathol., vol. 49, pp. 321-330.
47. Enochs W.S., Nilges M.J., Swartz H.M. A standardized test for the identification and characterization of melanins using electron paramagnetic resonance (EPR) spectroscopy. Pigment Cell Res., 1993, vol. 6, pp. 91-99.
48. Mostert A.B., Powell B.J., Pratt F.L., Hanson G.R., Sarna T., Gentle I.R., Meredith P. Role of semiconductivity and ion transport in the electrical conduction of melanin. Proc. Natl. Acad. Sci. USA, 2012, vol. 109, pp. 8943-8947.
49. Khajo A., Bryan R.A., Friedman M., Burger R.M., Levitsky Y., Casadevall A., Magliozzo R.S., Dadachova E. Protection of melanized Cryptococcus neoformans from lethal dose gamma irradiation involves changes in melanin’s chemical structure and paramagnetism. PLoS One, 2011., vol. 6, p. e25092.
50. Dadachova E., Bryan R.A., Huang X., Moadel T., Schweitzer A.D., Aisen P., Nosanchuk J.D., Casadevall A. Ionizing radiation changes the electronic properties of melanin and enhances the growth of melanized fungi. PLoS One, 2007, vol. 2, p. e457.
51. Korytowski W., Hintz P., Sealy R.S., Kalyanaraman B. Mechanism of dismutation of superoxide produced during autoxidation of melanin pigments. Biochem. Biophys. Res. Commun., 1985, vol. 131, pp. 659-665.
52. Olennikov D.N., Tankhaeva L.M., Rokhin A.V., Agafonova S.V. Physicochemical properties and antioxidant activity of melanin fractions from Inonotus obliquus sclerotia. Chem. Natural Compounds, 2012, vol. 48, pp. 396-403.
53. Różanowska M., Sarna T., Land E., Truscott T. Free radical scavenging properties of melanin: interaction of eu- and pheomelanin models with reducing and oxidizing radicals. Free Rad. Biol. Med., 1999, vol. 26, pp. 518-525.
54. Nosanchuk J.D., Casadevall A. The contribution of melanin to microbial pathogenesis. Cell Microbiol., 2003, vol. 5, pp. 203-223.
55. Yang Y., Fan F., Zhuo R., Ma F., Gong Y., Wan X., Jiang M., Zhang X. Expression of the laccase gene from a white rot fungus in Pichia pastoris can enhance the resistance of this yeast to H2O2-mediated oxidative stress by stimulating the glutathione-based antioxidative system. Appl. Environ. Microbiol., 2012, vol. 78, pp. 5845-5854.
56. Woo P.C.Y., Tam E.W.T., Chong K.T.K., Cai J., Tung E.T.K., Ngan A.H.Y., Lau S.K.P., Yuen K-Y. High diversity of polyketide synthase genes and the melanin biosynthesis gene cluster in Penicillium marneffei. FEBS J., 2010, vol. 277, pp. 3750-3758.
57. Jastrzebska M.M., Isotalo H., Paloheimo J., Stubb H. Electrical conductivity of synthetic DOPA-melanin polymer for different hydration states and temperatures. J. Biomater. Sci. Polym., 1995, vol. 7, pp. 577-586.
58. Paolo Jr., Dadachova E., Mandal P., Casadevall A.,Szaniszlo P.J., Nosanchuk J.D. Effects of disrupting the polyketide synthase gene WdPKS1 in Wangiella [Exophiala] dermatitidis on melanin production and resistance to killing by antifungal compounds, enzymatic degradation, and extremes in temperature. BMC Microbiol., 2006, vol. 6, p. 55.
59. Egorova A.S., Gessler, N.N.,Ryasanova L.P., Kulakovskaya T.V., Belozerskaya T.A.Stress resistance mechanisms in the indicator fungi from highly radioactive Chernobyl zone sites. Microbiology, 2015, vol. 84, pp. 152-158. (In Russ.)
60. Dighton J., Tugay T., Zhdanova N. Fungi and ionizing radiation from radionuclides. FEMS Microbiol. Lett., 2008, vol. 281, pp. 109-120.
61. Mahmoud Y.A-G. Uptake of radionuclides by some fungi. Mycobiology, 2004, vol. 32, pp. 110-114.
62. Dadachova E., Casadevall A. Ionizing radiation: how fungi cope, adapt, and exploit with the help of melanin. Curr. Opin. Microbiol., 2008, vol. 11, pp. 525-531.
63. Meredith P., Sarna T. The physical and chemical properties of eumelanin. Pigment Cell Res., 2006, vol. 19, pp. 572-594.
64. Riesz J., Gilmore J., Meredith P. Quantitative scattering of melanin solutions. Biophys. J., 2006, vol. 90, pp. 4137-4144.
65. Schweitzer A.D., Howell R.C., Jiang Z., Bryan R.A., Gerfen G., Chen C.C., Mah D., Cahill S., Casadevall A., Dadachova E. Physico-chemical evaluation of rationally designed melanins as novel nature-inspired radioprotectors. PLoS One, 2009, vol. 4, p. e7229.
66. Grishkan I. Ecological stress: melanization as a response in fungi to radiation. Extremophiles Handbook. Tokyo: Springer, 2011, 1247 p.
67. Dadachova E., Casadevall A. Melanin and resistance to ionizing radiation. Extremophiles Handbook. Tokyo: Springer, 2011, 1247 p.
68. Casadevall A., Cordero R.J., Bryan R., Nosanchuk J., Dadachova E. Melanin, radiation, and energy transduction in fungi. Microbiology Spectrum, 2017, vol. 5, pp. 1-7.
69. hdanova N.N., Zakharchenko V.A., Vasilevskaya A.I., Schkolni A.T., Kuchma I.D., Artishkova L.V. et al. Mycobiota of the Ukrainian woodland. Consequences of the Chernobyl disaster. Kiev. Naukova Dumka, 2013, 383 p. (In Russ.)
70. Zhdanova N.N., Tugay T., Dighton J., Zheltonozhsky V., McDermott P. Ionizing radiation attracts soil fungi. Mycol. Res., 2004, vol. 108, pp. 1089-1090.
71. Tugay T., Zhdanova N.N., Zheltonozhsky V., Sadovnikov L., Dighton J. The influence of ionizing radiation on spore germination and emergent hyphal growth response reactions of microfungi. Mycologia, 2006, vol. 98, pp. 521-527.
72. Aslanidi K., Ivanova A., Gessler N., Egorova A., Belozerskaya T. A Comparative investigation of adaptation to oxidative stress factors of a strain of mycelial fungus Paecilomyces lilacinus from Chernobyl Atomic Energy Station and strains of the same species from territories with basic level of radioactive pollution. Radiats. Biol. Radioekol., 2009, vol. 49, pp. 425-431.
73. Shuryak I., Bryan R.A., Nosanchuk J.D., Dadachova E. Mathematical modeling predicts enhanced growth of X-ray irradiated pigmented fungi. PLoS One, 2014, vol. 9, p. e85561.
74. Robertson K.L., Mostaghim A., Cuomo C.A., Soto C.M., Lebedev N., Bailey R.F., Wang Z. Adaptation of the black yeast Wangiella dermatitidis to ionizing radiation: molecular and cellular mechanisms. PLoS One, 2012, vol. 7, p. e48674.
75. Tugay T.I., Zheltonozhskaya M.V., Sadovnikov L.V., Tugay A.V., Farfán E.B. Effects of ionizing radiation on the antioxidant system of microscopic fungi with radioadaptive properties found in the Chernobyl exclusion zone. Health Phys., 2011, vol. 101, pp. 375-382.
76. Zakharova K., Marzban G., de Vera J.P., Lorek A., Sterflinger K. Protein patterns of black fungi under simulated Mars-like conditions. Sci Rep., 2014, vol. 4, no. 5114, pp. 1-7.
77. Turick C.E., Ekechukwu A.A., Milliken C.E., Casadevall A., Dadachova E. Gamma radiation interacts with melanin to alter its oxidation-reduction potential and results in electric current production. Bioelectrochemistry, 2011, vol. 82, pp. 69-73.
78. Bryan R., Jiang Z., Friedman M., Dadachova E. The effects of gamma radiation, UV and visible light on ATP levels in yeast cells depend on cellular melanization. Fungal Biol., 2011, vol. 115, pp. 945-949.
79. Palmer R.J.Jr., Friedmann E.I. Incorporation of inorganic carbon by Antarctic cryptoendolithic fungi. Polarforschung, 1988, vol. 58, pp. 189-191.
80. Moses V., Holm-Hansen O., Calvin M. Nonphotosynthetic fixation of carbon dioxide by three microorganisms. J. Bacteriol., 1959, vol. 77, pp. 70-78.
81. Borovansky J., Elleder M., Melanosome degradation: fact or fiction. Pigment Cell Res., 2003, vol. 16, p. 280-286.