INVESTIGATION OF THERMOELECTRIC CHARACTERISTICS OF CARBON NANOTUBES FOR THE DEVELOPMENT OF BIOSENSORS
Abstract and keywords
Abstract (English):
In this paper, the thermoelectric characteristics of carbon nanotubes are investigated. The differential thermo pods of single-layer carbon nanotubes of the "zig-zag" type, which are in the external longitudinal constant electric field, were studied. The dynamics of the electronic tube subsystem is described using the quasi-classical method using the Boltzmann kinetic equation. The formula for the differential thermal EMF coefficient is also derived and the nonlinear dependence on the external field strength is shown. To calculate the thermoelectric characteristics of carbon nanotubes, a method of decomposition of their periodic dispersion law into a Fourier series was used. With its help, transport characteristics are determined: electrical conductivity, Hall coefficient, thermal conductivity, and others. When calculating the coefficient of differential thermal EDC, a technique was used to study the dependence of the differential thermal EDC on the external constant electric field strength for carbon.

Keywords:
carbon nanotubes, thermopower, conductivity, nanostructures, sensors
Text
Text (PDF): Read Download
References

1. Schedin F., Geim A.K., Morozov S.V., Hill E.V., Blake P., Katsnelson M.I., Novoselov K.S. Detection of individual gas molecules adsorbed on grapheme. Nature Materials, 2007, vol. 6, pp. 652-655.

2. Varlamov A.A., Kavokin A.V., Luk'yanchuk I.A., Sharapov S.G. Anomal'nye termoelektricheskie i termomagnitnye svoystva grafena. UFN, 2012, t. 182, s. 1229-1234. [Varlamov A.A., Kavokin A.V., Lukyanchuk I.A., Sharapov S.G. Anomalous thermoelectric and thermomagnetic properties of graphene. UFN, 2012, vol. 182, pp. 1229-1234 (In Russ.)]

3. Sharapov S.G., Varlamov A.A. Anomalous growth of thermoelectric power in gapped grapheme. Phys. Rev. V., 2012, vol. 86, p. 035430.

4. D'yachkov P.N. Elektronnye svoystva i primenenie nanotrubok. M.: BINOM, Laboratoriya znaniy, 2010, 488 s. [Diachkov P.N. Electronic properties and application of nanotubes. M.: BINOM, Laboratory of knowledge, 2010, 488 p. (In Russ.)]

5. Dresselhaus M.S., Dresselhaus G., Eklund P.C. Science of fullerenes and carbon nanotubes. Acad. Press, New York, 1996, 965 p.

6. Belonenko M.B., Lebedev N.G., Sudorgin S.A. Koefficienty diffuzii i provodimosti poluprovodnikovyh uglerodnyh nanotrubok vo vneshnem elektricheskom pole. FTT, 2011, t. 53, s. 1841-1844. [Belonenko M.B., Lebedev N.G., Sudorgin S.A. Diffusion and conductivity coefficients of semiconductor carbon nanotubes in an external electric field. PoSS, 2011, vol. 53, pp. 1841-1844. (In Russ.)]

7. Landau L.D., Lifshic E.M. Fizicheskaya kinetika. M.: Fiz.-mat. lit., 1979, 528 c. [Landau L.D., Lifshits E.M. Physical kinetics. M.: Fiz.-mat. lit., 1979, 528 p. (In Russ.)]

8. Bulygin A.S., Shmelev G.M., Maglevannyy I.I. Differencial'naya termoeds sverhreshetki v sil'nom elektricheskom pole. FTT, 1999, t. 41, s. 1314-1316. [Bulygin A.S., Shmelev G.M., Maglevanny I.I. Differential thermoelectric power of a superlattice in a strong electric field. PoSS, 1999, vol. 41, p. 1314-1316 (In Russ.)]

9. Belonenko M.B., Lebedev N.G., Sudorgin S.A. Elektroprovodnost' i koefficient diffuzii elektronov v bisloe grafena. ZhTF, 2012, t. 82, s. 129-133. [Belonenko M.B., Lebedev N.G., Sudorgin S.A. Electrical conductivity and diffusion coefficient of electrons in graphene bilayer. JTF, 2012, vol. 82, pp. 129-133 (In Russ.)]

10. Sudorgin S.A., Belonenko M.B., Lebedev N.G. Effect of an electric field on the transport and diffusion properties of bilayer graphene ribbons. Physica Scripta, 2013, vol. 87, p. 015602.

11. Dykman I.M., Tomchuk P.M. Yavleniya perenosa i fluktuacii v poluprovodnikah. Nauk. dumka, Kiev, 1981, 320 c. [Dykman I.M., Tomchuk P.M. Transport and fluctuation phenomena in semiconductors. Nauk. Dumka, Kiev, 1981, 320 p. (In Russ.)]

12. Small J., Perez K., Kim P. Modulation of Thermoelectric power of Individual Carbon Nanotubes. Phys. Rev. Lett., 2003, vol. 91, p. 256801.

13. Small J., Kim P. Thermopower measurement of individual single walled nanotubes. Microscale thermophysical engineering, 2004, vol. 8, p. 1.

14. Egorushkin V.E., Melnikova N.V., Bobenko N.G., Ponomarev A.N. Low-temperature thermopower in disordered carbon nanotubes. Nanosystems: physics, chemistry, mathematics, 2013, vol. 4, pp. 622-629.

15. Eleckiy A.V. Transportnye svoystva uglerodnyh nanotrubok. UFN, 2009, t. 179, № 3, s. 225-242. [Eletsky A.V. Transport properties of carbon nanotubes. UFN, 2009, vol. 179, no. 3, pp. 225-242. (In Russ.)]


Login or Create
* Forgot password?