ON MOLECULAR MECHANISMS OF THE EFFEECT OF MAGNETIC CONDITIONS (ZERO AND COMBINED MAGNETIC FIELDS) ON THE PRODUCTION OF REACTIVE OXYGEN SPECIES IN NEUTROPHILS
Abstract and keywords
Abstract (English):
It has been shown that the decrease in intensity of 2,7-dichlorodihydrofluorescein oxidation processes in neurophils under hypomagnetic field exposure is not related to the calcium-mediated mechanisms as evidenced by the absence of the effect of cell-permeant Ca2+ chelators such as 1,2-bis-(2-amino-phenoxy)ethane- N,N,N',N'-tetraacetic acid acetoxymethyl ester on the intensity of the process alluded. This decrease is hardly caused by effects of exposure to hypomagnetic field on phosphorylation of NADPH-oxidase components because addition of a protein kinase C inhibitor, Ro 31-6233, did not virtually decrease the fluorescence intensity of intracellular dichlorodihydrofluorescein. Addition of a phospholipase C inhibitor, U73122, led to a negligible decrease in ROS production in control (almost same extent as in the experiment). In the presence of apocynin at different concentrations ROS production in unactivated neutrophils increased and it was 2 time lower under hypomagnetic field conditions. A decrease in ROS production which was more apparent during the experiment after addition of rotenone is indicative of the fact that the mitochondrial electron-transport chain is involved in the mechanism of the effect of a “zero” magnetic field. All this sharply distinguishes the effect of the “zero” field from the effects of combined magnetic fields, which are based on the effect on the calcium-dependent regulatory mechanisms that control the respiratory burst in neutrophils.

Keywords:
hypomagnetic conditions, combined magnetic fields, fluorescence, chemiluminescence, reactive oxygen species, neutrophils
Text
Publication text (PDF): Read Download
References

1. Mattsson M.O., Simkó M. Grouping of experimental conditions as an approach to evaluate effects of extremely low-frequency magnetic fields on oxidative response in in vitro studies. Frontiers in Public Health, 2014, vol. 2 (132), pp. 1-11.

2. Barnes F.S., Greenebaum B. The effects of weak magnetic field on radical pairs. Bioelectromagnetics, 2015, vol. 36, pp. 45-54.

3. Novikov V.V., Yablokova E.V., Fesenko E.E. Deystvie kombinirovannyh magnitnyh poley s ochen' slaboy peremennoy nizkochastotnoy komponentoy na lyuminolzavisimuyu hemilyuminescenciyu krovi mlekopitayuschih. Biofizika, 2015, t. 60, № 3, s. 530-533. [Novikov V.V., Yablokova E.V., Fesenko E.E. The action of combined magnetic fields with a very weak low-frequency alternating component on luminol-dependent chemiluminescence in mammalian blood. Biophysics (Moscow), 2015, vol. 60, no. 3, pp. 429-432]

4. Novikov V.V., Yablokova E.V., Fesenko E.E. Deystvie slabyh magnitnyh poley na hemilyuminescenciyu krovi cheloveka. Biofizika, 2016, t. 61, № 1, s. 126-130. [Novikov V.V., Yablokova E.V., Fesenko E.E. The effect of weak magnetic fields on the chemiluminescence of human blood. Biophysics (Moscow), 2016, vol. 61, no. 1, pp. 105-108.]

5. Novikov V.V., Yablokova E.V., Fesenko E.E. Praymirovanie respiratornogo vzryva u neytrofilov in vitro pri deystvii slabyh kombinirovannyh postoyannogo i nizkochastotnogo peremennogo magnitnyh poley. Biofizika, 2016, t. 61, № 3, s. 510-515. [Novikov V.V., Yablokova E.V., Fesenko E.E. Priming of the respiratory burst in neutrophils exposed to a combination of weak constant and alternating low-frequency magnetic fields in vitro. Biophysics (Moscow), 2016, vol. 61, no. 3, pp. 429-434.]

6. Novikov V.V., Yablokova E.V., Fesenko E.E. Vliyanie slabyh magnitnyh poley na produkciyu aktivnyh form kisloroda v neytrofilah. Biofizika, 2016, t. 61, № 6, s. 1159-1163. [Novikov V.V., Yablokova E.V., Fesenko E.E. The effect of weak magnetic fields on the production of reactive oxygen species in neutrophils. Biophysics (Moscow), 2016, vol. 61, no. 6, pp. 959-962.]

7. Novikov V.V., Yablokova E.V., Novikov G.V., Fesenko E.E. Rol' lipidnoy peroksidacii i mieloperoksidazy v praymirovanii respiratornogo vzryva v neytrofilah pri deystvii kombinirovannyh postoyannogo i peremennogo magnitnyh poley. Biofizika, 2017, t. 62, № 5, s. 926-931. [Novikov V.V., Yablokova E.V., Novikov G.V., Fesenko E.E. The role of lipid peroxidation and myeloperoxidase in priming a respiratory burst in neutrophils under the action of combined constant and alternating magnetic fields. Biophysics (Moscow), 2017, vol. 62, no. 5, pp. 759-763.]

8. Novikov V.V., Yablokova E.V., Fesenko E.E. Rol' gidroksil'nyh radikalov i ionov kal'ciya v praymirovanii respiratornogo vzryva v neytrofilah i usilenii lyuminol-zavisimoy hemilyuminescencii krovi pri deystvii kombinirovannyh magnitnyh poley s ochen' slaboy peremennoy nizkochastotnoy komponentoy. Biofizika, 2017, t. 62, № 3, s. 547-551. [Novikov V.V., Yablokova E.V., Fesenko E.E. The role of hydroxyl radicals and calcium ions in the priming of a respiratory burst in neutrophils and the increase in luminol-dependent blood chemiluminescence on exposure to combined magnetic fields with a very weak low-frequency alternating component. Biophysics (Moscow), 2017, vol. 62, no. 3, pp. 440-443.]

9. Novikov V.V., Yablokova E.V., Fesenko E.E. Rol' kisloroda v prayminge neytrofilov pri deystvii slabogo magnitnogo polya. Biofizika, 2018, t. 63, № 2, s. 277-281. [Novikov V.V., Yablokova E.V., Fesenko E.E. The role of oxygen in the priming of neutrophils on exposure to a weak magnetic field. Biophysics (Moscow), 2018, vol. 63, no. 2, pp. 56-59.]

10. Zhang H., Zhang Z., Mo W. et al. Shielding of the geomagnetic field reduces hydrogen peroxide production in human neuroblastoma cell and inhibits the activity of CuZn superoxide dismutase. Protein Cell, 2017, vol. 8, no. 7, pp. 527-537.

11. Martino C.F., Castello P.R. Modulation of hydrogen peroxide production in cellular systems by low level magnetic fields. PLoS ONE, 2011, vol. 6, no. 8, e22753.

12. Politanski P., Rajkowska E., Brodecki M. et al. Combined effect of X-ray radiation and static magnetic fields on reactive oxygen species in rat lymphocytes in vitro. Bioelectromagnetics, 2013, vol. 34, pp. 333-336.

13. Binhi V.N., Prato F.S. Biological effects of the hypomagnetic field: Analytical review of experiments and theories. PLoS ONE, 2017, vol. 12, no. 6, e0179340.

14. Novikov V.V., Yablokova E.V., Fesenko E.E. Vliyanie «nulevogo» magnitnogo polya na produkciyu aktivnyh form kisloroda v neytrofilah. Biofizika, 2018, t. 63, № 3, s. 484-488. [Novikov V.V., Yablokova E.V., Fesenko E.E. The effect of a “zero” magnetic field on the production of reactive oxygen species in neutrophils. Biophysics (Moscow), 2018, vol. 63, no. 3, pp. 365-368.]

15. Novikov V.V., Yablokova E.V., Valeeva E.R., Fesenko E.E. K voprosu o molekulyarnyh mehanizmah deystviya «nulevogo» magnitnogo polya na produkciyu aktivnyh form kisloroda v neaktivirovannyh neytrofilah. Biofizika, 2019, t. 64, № 4, s. 720-725. [Novikov V.V., Yablokova E.V., Galeeva E.R., Fesenko E.E. On molecular mechanisms of the effect of a “zero” magnetic field on the production of reactive oxygen species in inactivated neutrophils. Biofizika, 2019, vol. 64, no. 4, pp. 720-725. (In Russ.)]

16. Novikov V.V., Ponomarev V.O., Novikov G.V., Kuvichkin V.V., Yablokova E.V., Fesenko E.E. Effekty i molekulyarnye mehanizmy biologicheskogo deystviya slabyh i sverhslabyh magnitnyh poley. Biofizika, 2010, t. 55, № 4, s. 631-639. [Novikov V.V., Ponomarev V.O., Novikov G.V., Kuvichin V.V., Yablokova E.V. Fesenko E.E. Effects and molecular mechanisms of the biological action of weak and extremely weak magnetic fields. Biophysics (Moscow), 2010, vol. 55, no. 4, pp. 565-572.]

17. Vladimirov Yu.A., Proskurina E.V. Svobodnye radikaly i kletochnaya hemilyuminescenciya. Uspehi biologicheskoy himii, 2009, t. 49, s. 341-388. [Vladimirov Yu.A., Proskurina E.V. Free radicals and cellular chemiluminescence. Usp. Biol. Himii, 2009, vol. 49, pp. 341-388. (In Russ.)]

18. Novikov V.V., Yablokova E.V., Novikova N.I., Fesenko E.E. Vliyanie razlichnyh himicheskih agentov na prayming neytrofilov v slabyh kombinirovannyh magnitnyh polyah. Biofizika, 2019, t. 64, № 2, s. 290-295. [Novikov V.V., Yablokova E.V., Novikova N.I., Fesenko E.E. The effects of various chemical agents on priming of neutrophils exposed to weak combined magnetic fields. Biophysics (Moscow), 2019, vol. 64, no. 2, pp. 209-213.]

19. Stolk J., Hiltermann T.J., Dijkman J.H., Verhoeven A.J. Characteristics of the inhibition of NADPH oxidase activation in neutrophils by apocynin, a methoxy-substituted catechol. Am. J. Respir. Cell. Mol. Biol., 1994, vol. 11, no. 1, pp. 95-102.

20. Vejrazka M., Mícek R., Stípek S. Apocynin inhibits NADPH oxidase in phagocytes but stimulates ROS production in non-phagocytic cells. Biochim. Biophys. Acta, 2005, vol. 1722, no. 2, pp. 143-147.

21. Castor L.R., Locatelli K.A., Ximenes V.F. Pro-oxidant activity of apocynin radical. Free Radic. Biol. Med., 2010, vol. 48, no. 12, pp. 1636-1643.


Login or Create
* Forgot password?