SPECTRAL AND LUMINESCENCE CHARACTERISTICS OF THE AMYLOID STRUCTURES COMPLEXES WITH BLOOD PROTEINS
Abstract and keywords
Abstract (English):
Analysis of the fluorescence parameters of thioflavin T, which is specific for the amyloid fibrils detection, and the parameters of the intrinsic fluorescence of blood proteins allowed to establish that the formation of the complex "amyloid structures - serum proteins" depends on the incubation temperature because of the bonds between proteins and their ligands become weaker under elevated temperatures. It was demonstrated that alteration of the incubation medium pH, both to the acidic and alkaline region, also affects on the formation of the complexes of serum albumin with amyloid structures, apparently as a result of the albumins binding ability changing during their oxidation. It was found that essential (Zn, Cu) trace elements interacting with the complex "amyloid structures - serum proteins" lead to modification of parameters as an intrinsic fluorescence as a fluorescent probe, that confirms the assumption about existence of the metal-binding sites in amyloid fibrils for metal ions.

Keywords:
amyloid structures, blood proteins, spectral characteristics, physical and chemical factors
Text
Text (PDF): Read Download
References

1. Lansbury P.T. Evolution of amyloid: what normal protein folding may tell us about fibrillogenesis and disease. Proceedings of the National Academy of Sciences of the United States of America, 1999, vol. 96, no. 7, DOI:https://doi.org/10.1073/pnas.96.7.3342.

2. Uversky V.N., Fink A.L. Conformational constraints for amyloid fibrillation: the importance of being unfolded. Biochimica et Biophysica Acta, 2004, vol. 169, no. 2, DOI:https://doi.org/10.1016/j.bbapap.2003.12.008.

3. Goedert M. Alpha-synuclein and neurodegenerative diseases. Nature Reviews Neuroscience, 2001, vol. 2. DOI:https://doi.org/10.1038/35081564.

4. Batarseh Y.S., Duong Q.-V., Mousa Y.M., Al Rihani S.B., Elfakhri K., Kaddoumi A. Amyloid-β and astrocytes interplay in amyloid-β related disorders. International Journal of Molecular Sciences, 2016, vol. 17, no. 3. DOI:https://doi.org/10.3390/ijms17030338.

5. Louw C., Gordon A., Johnston N., Mollatt C., Bradley G., Whiteley C.G. Arginine deiminases: therapeutic tools in the etiology and pathogenesis of Alzheimer's disease. Journal of Enzyme Inhibition and Medicinal Chemistry, 2007, vol. 22, no. 1. DOI:https://doi.org/10.1080/14756360600990829.

6. Dovidchenko N.V., Leonova E.I., Galzickaya O.V. Mehanizmy obrazovaniya amiloidnyh fibrill. Uspehi biologicheskoy himii, 2014, t. 54, s. 203-230. [Dovidchenko N.V., Leonova E.I., Galzickaya O.V. Mechanisms of amyloid fibrils formation. Uspekhi Biologicheskoi Khimii, 2014, vol. 54, pp. 203-230. (In Russ)]

7. Dobson C.M. The structural basis of protein folding and its links with human disease. Philosophical Transactions of the Royal Society B: Biological Sciences, 2001, vol. 356. DOI:https://doi.org/10.1098/rstb.2000.0758.

8. Rad'ko S.P., Hmeleva S.A., Suprun E.V., Kozin S.A., Bodoev N.V., Makarov A.A., Archakov A.I., Shumyanceva V.V. Fiziko-himicheskie metody issledovaniya agregacii b-amiloida. Biomedicinskaya himiya, 2015, t. 61, vyp. 2, s. 258-274. [Radko S.P., Khmeleva S.A., Suprun E.V., Kozin S.A., Bodoev N.V., Makarov A.A., Archakov A.I., Shumyantseva V.V. Physico-chemical methods for studying amyloid-β aggregation. Biochemistry, Supplemental Series B, 2015, vol. 9, no. 3, pp. 258-274. (In Russ)]

9. Huang B., He J., Ren J., Yan X.Y., Zeng C.M. Cellular membrane disruption by amyloid fibrils involved intermolecular disulfide cross - linking. Biochemistry, 2009, vol. 48, no. 25. DOI:https://doi.org/10.1021/bi900219c.

10. Malisauskas M., Ostman J., Darinskas A., Zamotin V., Liutkevicius E., Lundgren E., Morozova-Roche L.A. Does the cytotoxic effect of transient amyloid oligomers from common equine lysozyme in vitro imply innate amyloid toxity? Journal of Biological Chemistry, 2005, vol. 280, no. 8. DOI:https://doi.org/10.1074/jbc.M407273200.

11. Luk'yanenko L.M., Zubrickaya G.P., Venskaya E.I., Skorobogatova A.S., Kut'ko A.G., Slobozhanina E.I. Vliyanie amiloidov na fiziko-himicheskioe sostoyanie lipidnogo bisloya membran eritrocitov. Novosti mediko-biologicheskih nauk, 2013, t. 7, № 1, s. 9-13. [Lukyanenko L.M., Zubritskaja G.P., Venskaya E.I., Skarabahatava A.S., Kutko A.G., Slobozhanina E.I. Effect of amyloids on the physic-chemical state of the lipid bilayer of human erythrocytes. News of biomedical sciences, 2013, vol. 7, no. 1, p. 9-12. (In Russ)]

12. Zubrickaya G.P., Luk'yanenko L.M., Venskaya E.I., Slobozhanina E.I. Inducirovannaya amiloidami modifikaciya membran eritrocitov cheloveka. Vliyanie antioksidantov. Doklady NAN Belarusi, 2014, № 4, s. 78-81. [Zubritskaja G.P., Lukyanenko L.M., Venskaya E.I., Slobozhanina E.I. Modification of human erythrocyte membranes induced by amyloids. Doklady Natsional’noi Akademii nauk Belarusi, 2014, no. 4, pp. 78-81. (In Russ.)]

13. Krebs M.R., Bromley E.N., Donald A.M. The binding of thioflavin-T to amyloid fibrils: localization and implications. Structural Biology, 2005, vol. 149, no. 1. DOI:https://doi.org/10.1016/j.jsb.2004.08.002.

14. Amdursky N., Erez Y., Huppert D. Molecular rotors: what lies behind the high sensitivity of the thioflavin-T fluorescent marker. Accounts of Chemical Research, 2012, vol. 45. DOI:https://doi.org/10.1021/ar300053p.

15. Duce J., Bush A. Biological metals and Alzheimer's disease: implications for therapeutics and diagnostics. Progress in Neurobiology, 2010, vol. 92, no. 1. DOI:https://doi.org/10.1016/j.pneurobio.2010.04.003.

16. Tõugu V., Tiiman A., Palumaa R. Interactions of Zn(II) and Cu(II) ions with Alzheimer's amyloid-beta peptide. Metal ion binding, contribution to fibrillization and toxicity. Metallomics, 2011, vol. 3, no. 3. DOI:https://doi.org/10.1039/c0mt00073f.

17. Greenwald J., Riek R. Biology of amyloid: structure, function, and regulation. Structure, 2010, vol. 18, no. 10. DOI:https://doi.org/10.1016/j.str.2010.08.009.

18. Lau T.L., Ambroggio E.E., Tew D.J., Cappai R., Masters C.L., Fidelio G.D., Barnham K.J., Separovic F. Amyloid-β peptide disruption of lipid membranes and the effect of metal ions. J. Mol. Biol., 2006, vol. 356, no. 3. DOI:https://doi.org/10.1016/j.jmb.2005.11.091.


Login or Create
* Forgot password?