Moscow, Moscow, Russian Federation
Moscow, Moscow, Russian Federation
The conformational and structure changes of heme side-chains of human hemoglobin in red blood cells and intact hemoglobin upon ligand (O2 or CO2) dissociation have been studied be resonance Raman spectroscopy. Resonance Raman spectra of oxygenated and deoxygenated functional red blood cells and isolate hemoglobin recorded using 532 nm laser excitation are presented. The high sensitivity of Raman spectroscopy allows to registration conformation changes of heme (protoporphyrin) and globin part of protein in vivo and in vitro . We studied the effects of temperature on conformational dynamic changes of intracellular and intact hemoglobin upon hypoxia and normoxia states. We showed modification in the hemoglobin vibration bands in the CH2/CH3 stretching bands in the 2800-3100 cm-1 region. Spectral profile in the higher spectral region have been assigned to the symmetric / asymmetric CH, stretch, and symmetric / asymmetric CH3, stretch. This study provides new insights into the vibrational dynamics of heme and globin parts within functional red blood cells and solve to cooperative ligand binding mechanism of conformation changes of oxyhemoglobin and deoxyhemoglobin. Ratios from chosen Raman peaks were calculated and compared between the different subjects. We show that conformational and side-chains of hemoglobin in red blood cells and intact hemoglobin do not correlated with oxygen water solubility.
hemoglobin, red blood cells, Raman spectroscopy
1. De Rosa M.C., Alinovi C.C., Galtieri A. Allosteric properties of hemoglobin and the plasma membrane of the erythrocyte: New insights in gas transport and metabolic modulation. IUBMB Life, 2008, vol. 60, no. 2. DOI:https://doi.org/10.1002/iub.15.
2. Jensen K. Roos B., Ryde U. O-binding to heme: electronic structure and spectrum of oxyheme, studied by multiconfigurational methods. Journal of Inorganic Biochemistry, 2005, vol. 99 no. 1. DOI:https://doi.org/10.1016/j.jinorgbio.2004.11.008
3. Hill R.J. The Structure of Human Hemoglobin. The Journal of Biological Chemistry, 1962, vol. 237, no. 5.
4. Holly D., Glenn B. Cerebral microvascular dilation during hypotension and decreased oxygen tension: a role for nNOS. American Journal of Physiology-Heart and Circulatory Physiology, 2007, vol. 293, no. 4. DOI:https://doi.org/10.1152/ajpheart.00190.2007
5. Wei H.S., Kang H., Rasheed I.Y.D., Zhou S., Lou N., Gershteyn A., McConnel E.D., Wang Y., Richardson K.E., Palmer A.F., Xu C., Wan J., Nedergaard M. Erythrocytes are oxygen-sensing regulators of the cerebral microcirculation. Neuron, 2016, vol. 91. DOI:https://doi.org/10.1016/j.neuron.2016.07.016.
6. Urazova O.I., Gol'dberg E.D., Novickiy V.V. Patofiziologiya: ucheb.: v 2 t. M. : GEOTAR-Media, 2012, 304 s. [Urazova O.I., Goldberg E.D., Novitsky V.V. Pathophysiology. M: GOATAR-Media, 2012, 304 p.]
7. Goheen S.C., Lis L.J., Kucuk O., Westerman M.P., Kauffman J.W. Study of intact and modified erythrocyte membranes with laser Raman spectroscopy. Journal of Raman spectroscopy, 1993, vol. 24, no. 9. DOI:https://doi.org/10.1002/jrs.1250240908.
8. Wood B.R., McNaughton D. Micro-Raman characterization of high- and low-spin heme moieties within single living erythrocytes. Biopolymers, 2002, vol. 67, no. 4-5, DOI:https://doi.org/10.1002/bip.10120.
9. Wood B.R., Tait B., McNaughton D. Micro-Raman characterisation of the R to T state transition of haemoglobin within a single living erythrocyte. Biochimica et Biophysica Acta - Molecular Cell Research, 2001, vol. 1539, no. 1-2, DOI:https://doi.org/10.1016/S0167-4889(01)00089-1.
10. Wood B.R., Hammer L., McNaughton D. Resonance Raman spectroscopy provides evidence of heme ordering within the functional erythrocyte. Vibrational Spectroscopy, 2005 vol. 38, no. 1-2. DOI:https://doi.org/10.1016/j.vibspec.2005.02.016.
11. Parthasarathi N., Hansen C., Yamaguchi S., Spiro T.G. Metalloporphyrin core size resonance Raman marker bands revisited: implications for the interpretation of hemoglobin photoproduct Raman frequencies. Journal of the American Chemical Society, 1987, vol. 109, no. 13. DOI:https://doi.org/10.1021/ja00247a009.
12. Wood B.R., Caspers P., Puppels G.J., Pandiancherri S., McNaughton D. Resonance Raman spectroscopy of red blood cells using near-infrared laser excitation. Analytical and bioanalytical chemistry, 2007, vol. 387, no. 5. DOI:https://doi.org/10.1007/s00216-006-0881-8.
13. Nagatomo S., Nagai M., Mizutani Y., Yonetani T., Kitagawa T. Quaternary structures of intermediately ligated human hemoglobin A and influences from strong allosteric effectors: resonance Raman investigation. Biophysical journal, vol. 89, no. 2. DOI:https://doi.org/10.1529/biophysj.104.049775.
14. Choi S., Spiro T.G., Langry K.C., Smith K.M., Budd D.L., La Mar G.N. Structural correlations and vinyl influences in resonance Raman spectra of protoheme complexes and proteins. Journal of the American Chemical Society, 1982, vol. 104, no. 16. DOI:https://doi.org/10.1021/ja00380a006.
15. Howell N.K., Arteaga G., Nakai S., Li-Chan E.C. Raman spectral analysis in the C-H stretching region of proteins and amino acids for investigation of hydrophobic interactions. Journal of agricultural and food chemistry, 1999, vol. 47, no. 3. DOI:https://doi.org/10.1021/jf981074l.
16. Camp Jr.C.H., Cicerone M.T. Chemically sensitive bioimaging with coherent Raman scattering. Nature photonics, 2015, vol. 9, no. 5. DOI:https://doi.org/10.1038/nphoton.2015.60.
17. Torres Filho I.P., Terner J., Pittman R.N., Proffitt E., Ward K.R. Measurement of hemoglobin oxygen saturation using Raman microspectroscopy and 532-nm excitation. Journal of applied physiology, 2008, vol. 104, no. 6. DOI:https://doi.org/10.1152/japplphysiol.00025.2008.
18. Brazhe N.A., Abdali S., Brazhe A.R., Luneva O.G., Bryzgalova N.Y., Parshina E.Y., Sosnovtseva O.V., Maksimov G.V. New insight into erythrocyte through in vivo surface-enhanced Raman spectroscopy. Biophysical journal, 2009, vol. 97, no. 12. DOI:https://doi.org/10.1016/j.bpj.2009.09.029.
19. Minetti M., Ceccarini M., Di Stasi A.M.M., Petrucci T.C., Marchesi V.T. Spectrin involvement in a 40 C structural transition of the red blood cell membrane. Journal of cellular biochemistry, 1986, vol. 30, no. 4. DOI:https://doi.org/10.1002/jcb.240300409