In this paper, we studied the influence of a low-frequency alternating magnetic field on viability and magnetic properties of magnetically modified and native yeast cells. As a result of magnetic labeling with different extracellular concentration of magnetic nanoparticles in the culture medium, samples of suspensions of viable magnetically labeled yeast cells with different magnetic susceptibility were obtained. Measurements of cell viability showed that the procedure of magnetic modification reduces cell viability less than 30% compared with native cells. It was found that under the action of an alternating magnetic field, cells lose their viability in frequency-dependent manner. The greatest effect of inhibiting viability by an alternating magnetic field is in the native yeast suspension. In addition, we found no significant changes in the magnetic properties of cells after their treatment by alternating magnetic field. A possible explanation of the viability data might be the action of inductive currents on yeast cells.
magnetic nanoparticles, magnetic labeling, alternating magnetic field, yeast cells
1. Bettina Kozissnik, Ana C. Bohorquez, Jon Dobson & Carlos Rinai. Magnetic fluid hyperthermia: Advances, challenges, and opportunity. International Journal of Hyperthermia, 2013, vol. 29, no. 8, pp. 706-7142.
2. Ahmed M., Brace C.L., Lee F.T., Goldberg S.N. Principles of and Advances in Percutaneous Ablation. Radiology, 2011, vol. 258, pp. 351-369.
3. Zhang E., Kircher M.F., Koch X.M., Eliasson L., Goldberg S.N., Renstro E. Dynamic Magnetic Fields Remote Control Apoptosis via Nanoparticle Rotation. ACS Nano, 2014, vol. 8, pp. 3192-3201.
4. Turchin V.V., Legen'kiy Yu.A., Solopov M.V., Popandopulo A.G., Bespalova S.V., Fistal' E.Ya. Magnitoforeticheskie svoystva fetal'nyh fibroblastov cheloveka, markirovannyh superparamagnitnymi nanochasticami oksida zheleza, stabilizirovannymi citratom. Geny i kletki, 2017, t. 12, vyp. 1, s. 47-53. @@[Turchyn V.V., Legenkiy Yu.A., Solopov M.V., Popandopulo A.G., Bespalova S.V., Fistal E.Ya. Magnetophoretic properties of human fetal fibroblasts magnetically labeled with citrate stabilized superparamagnetic iron oxide nanoparticles. Genes and cells, 2017, vol. 12, iss. 1, pp. 47-53. (In Russ.)]
5. Bingi V. N. Principy elektromagnitnoy biofiziki. M.: FIZMATLIT, 2011, 592 s. @@[Binhi V.N. Principles of electromagnetic biophysics. Moscow: FIZMATLIT, 2011, 592 p. (In Russ.)]
6. Bespalova S.V., Klad'ko D.V., Legen'kiy Yu.A. Vliyanie postoyannogo magnitnogo polya na process magnitnoy modifikacii Saccharomyces cerevisiae. I Vserossiyskaya konferenciya s mezhdunarodnym uchastiem «Fizika i ekologiya EMI», p. Agoy, 2017, Nauchnye trudy konferencii, t. 1, s. 3-4. @@[Bespalova S.V., Kladko D.V., Legenkiy Yu.A. Influence of static magnetic field on magnetic modification of yeast cells. I Russian conference with international participation “Physics and Ecology of EMP”, Agoy, 2017, Conference proceedings, vol. 1, p. 3-4. (In Russ.)]
7. Kara B.V., Simpson W.M., Hammond R.M. Prediction of the fermentation performance of brewing yeast with the acidification power test. Journal of the Institute of Brewing, 1988, no. 94, pp. 153-158.